
Design and Implementation of Blood

Donation Hub

by

Jebinur Akter

ID: CSE1901016053

Mehrin Zihan Khan

ID: CSE1901016050

Supervised by

Bulbul Ahamed

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SONARGAON UNIVERSITY (SU)

January 2023

Design and Implementation of Blood

Donation Hub

by

Jebinur Akter

ID: CSE1901016053

Mehrin Zihan Khan

ID: CSE1901016050

Supervised by

Bulbul Ahamed

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SONARGAON UNIVERSITY (SU)

January 2023

APPROVAL

The project titled “Design and Implementation of Blood Donation Hub” submitted by Jebinur

Akter (CSE1901016053) and Mehrin Zihan Khan(CSE1901016050) to the Department of

Computer Science and Engineering, Sonargaon University (SU), has been accepted as satisfactory

for the partial fulfillment of the requirements for the degree of Bachelor of Science in Computer

Science and Engineering and approved as to its style and contents.

Board of Examiners

--

Bulbul Ahamed

Associate Professor & Head

Department of Computer Science and Engineering

Sonargaon University (SU)

Supervisor

--

(Examiner Name & Signature)

Department of Computer Science and Engineering

Sonargaon University (SU)

Examiner 1

--

(Examiner Name & Signature)

Department of Computer Science and Engineering

Sonargaon University (SU)

Examiner 2

--

(Examiner Name & Signature)

Department of Computer Science and Engineering

Sonargaon University (SU)

Examiner 3

Page | iii

DECLARATION

We, hereby, declare that the work presented in this report is the outcome of the investigation

performed by us under the supervision of Bulbul Ahamed, Associate Professor & Head,

Department of Computer Science and Engineering, Sonargaon University, Dhaka, Bangladesh.

We reaffirm that no part of this project has been or is being submitted elsewhere for the award

of any degree or diploma.

Countersigned

(Bulbul Ahamed)

Supervisor

Signature

Jebinur Akter

ID: CSE1901016053

Mehrin Zihan Khan

ID: CSE1901016050

Page | iv

ABSTRACT

Blood donation is a vital part of worldwide healthcare. It relates to blood transfusion as a

life-sustaining and life-saving procedure as well as a form of therapeutic phlebotomy as a

primary medical intervention. Over one hundred million units of blood are donated each year

throughout the world. The modern world almost wholly depends on advanced technology.

Healthcare is now also a part of online based world. Blood Donation Hub is basically a

web-based application that has been chosen to donate and receive blood. This application is

based on an online platform. It is user-friendly, simple, fast, and cost-effective which saves

time and lives. This application has many features and the main feature is that receiver can find

donors online for blood management. Another important feature is that receiver can send a

request for blood and if the blood group matches then the donor can accept the blood request.

Page | v

ACKNOWLEDGMENT

At the very beginning, we would like to express my deepest gratitude to the Almighty Allah

for giving us the ability and the strength to finish the task successfully within the schedule

time.

We are auspicious that we had the kind association as well as supervision of Bulbul Ahamed,

Associate Professor & Head, Department of Computer Science and Engineering, Sonargaon

University whose hearted and valuable support with best concern and direction acted as

necessary recourse to carry out our project.

We would like to convey our special gratitude to Prof. Dr. Md Alamgir Hossain, Dean,

Faculty of Science and Engineering for his kind concern and precious suggestions.

We are also thankful to all our teachers during our whole education, for exposing us to the

beauty of learning.

Finally, our deepest gratitude and love to my parents for their support, encouragement, and

endless love.

Page | vi

LIST OF ABBREVIATIONS

BDH Blood Donation Hub

CSS Cascading Style Sheets

DFD Data Flow Diagram

ERD Entity Relationship Diagram

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

PHP Hypertext Preprocessor

SQL Structured Query Language

UI User Interface

XAMPP X-operating system, Apache, Mysql, Php, Perl

TABLE OF CONTENTS

Title Page No.

DECLARATION …………………………………………………………..……..... iii

ABSTRACT ……………………...……………………………………………….... iv

ACKNOWLEDGEMENT ………………………………………….……………... v

LIST OF ABBREVIATIONS……………………………………….……………... vi

CHAPTER 1

1 – 2

INTRODUCTION TO BLOOD DONATION HUB

 1.1 Introduction……………………………………..…………………..... 1

 1.2 Motivation……………………………………..…………………....... 1

 1.3 Problem Statement………………………...………………………..... 1

 1.4 What is “Blood Donation Hub”?…………………...……...….……… 2

 1.5 Objectives ……..…………….………………............……...….…….. 2

 1.6 Chapter Review………………………………….…………………… 2

CHAPTER 2 3– 4

BACKGROUND OF THE PROJECT

 2.1 Introduction…………………………………………………….…......... 3

 2.2 Background Study ………………………………….………………….. 3

 2.3 Design Requirements……………………………….………………….. 4

 2.4 Challenges…………………………………………………….…........... 4

CHAPTER 3 5 – 7

TOOLS AND TECHNOLOGY

 3.1 Introduction……………………………….……………………………. 5

 3.2 Tools and Technology……………………………….…………………. 5 – 7

CHAPTER 4

8 – 16

LOGICAL SYSTEM SPECIFICATION

 4.1 Introduction…………………………………………….......................... 8

 4.2 Modules Overview……………………………………….…………….. 8

 4.3 Entities……………………………………………................................. 9

 4.4 Attributes…………………………………………................................. 9

 4.5 Relationships…………………………………………............................ 9

 4.6 E-R Diagram…………………………………………............................ 10

 4.7 Use case Diagram…………………………………………..................... 11

 4.8 Schema Diagram…………………………………………...................... 12

 4.9 Data Flow Diagram………………………………………….................. 13 – 14

 4.10 Database Table…………………………………………......................... 15 – 16

CHAPTER 5 17 – 30

USER INTERFACE AND IMPLEMENTATION

 5.1 Introduction ………………………………….………………………… 17

 5.2 Home Page ……………………………….……………………………. 17

 5.3 Registration Form Page………………………………………………… 18

 5.4 User Login And Admin Login Page……………………………………. 19

 5.5 Receiver Profile……………………………….………………………... 20

 5.6 Blood Request Page……………………………….……………………. 21

 5.7 No Interested Donors (from Receiver Profile)…………………………. 22

 5.8 Blood Managed(from Receiver Profile)……………………….………... 23

 5.9 Donor Profile (Status Unavailable)……………………………………... 24

 5.10 Donor Profile(Status Available)………………………………………… 25

 5.11 Donor Profile (Request Cancel)………………………........................... 26

 5.12 Admin Dashboard………………………………………......................... 27

 5.13 Admin Dashboard (All Donors List) ………………….………………... 28

 5.14 Admin Dashboard (All Receivers List) ………………………………… 29

 5.15 Admin Dashboard (All Blood Requests List)…………………………… 30

CHAPTER 6 31

 CONCLUSION, LIMITATIONS AND FUTURE WORKS

 6.1 Conclusion ………………………………………………………..….. 31

 6.2 Limitations………………………………………………………..…... 31

 6.3 Future Works…………………………………………………….….... 31

REFERENCES ……………………………………………………….…………....... 32

APPENDIX ………………………………………………………………………….. 33 - 45

LIST OF TABLES

 Table No. Title Page No.

Table 3.1: Donor Table………………………………………………….15

Table 3.2: Interested Donor Table………………………………………15

Table 3.3: Receiver Table ………………………………………………16

Table 3.4: Blood Request Table…………………………………………16

Table 3.5: Blood Group Table……..…………………………………….16

LIST OF FIGURES

 Figure No. Title Page No.

Fig 3.1: E-R Diagram…………………………………...…………………………….....10

Fig 3.2: Use case Diagram…………………………………………………………...…..11

Fig 3.3: Schema Diagram……………………………………………………….…...…..12

Fig 3.4: Data-flow Diagram (Level-0) …………………………………………………..13

Fig 3.5: Data-flow Diagram (Level-1) …………………………………………………..13

Fig 3.6: Data-flow Diagram (Level:2) ……...…………………………………………...13

Fig 3.7: Data-flow Diagram (Level:3) …………………………………………………..14

Fig 3.8: Data-flow Diagram (Level:4) …………………………………………………..14

Fig 4.1: Home Page...………………………………………………………………........17

Fig 4.2: Registration Form page……………………………………………...……….…18

Fig 4.3: User Login & Admin Login Page …………………………………………....…19

Fig 4.4: Receiver Profile………………………………………………………………....20

Fig 4.5: Blood Request Page………………………………………………..........….…...21

Fig 4.6: Receiver Profile……………………………………….....……………………...22

Fig 4.7: Receiver Profile (Blood Managed)…..………………………………………….23

Fig 4.8: Donor Profile (Status Unavailable) ……………………………….…………….24

Fig 4.9: Donor Profile (Status Available) …………………………………………….....25

Fig 4.10: Donor Profile (Request Cancel) …………………………………………….….26

Fig 4.11: Admin Dashboard …………..…………………………………....………….…27

Fig 4.12: Admin Dashboard (All Donors List)…..……….…………………...…………..28

Fig 4.13: Admin Dashboard (All Receivers List)……..……………………….……....….29

Fig 4.14: Admin Dashboard (All Blood Requests List) ……….…………………….....…30

Page | 1

CHAPTER 1

INTRODUCTION TO BLOOD DONATION HUB

1.1 Introduction
Nowadays everything is switching from a desktop environment to client server architecture.

Most of the application software is designed for distribution systems. That is why internet

application is growing rapidly. To capture the global market through this internet all the

software companies are adapting this internet technology. [1] This project has been developed

for those users who are willing to get the Blood information easily by a website. By using them

Blood Donation Hub can access all information over desktop, phone or tablet where internet is

available. In this system receivers & donors can store and update their information easily. This

system is very useful for humans because patients can die if they don’t get blood in time and

this system is useful for humans to prevent that death. The receiver sends the blood request and

the blood request accepted by the donor.

1.2 Motivation

Resource sharing is the main idea of these client-server technologies. Centralized distribution

system can be counted as a major turning point for this internet technology. Global

authenticated access causes the most inspiration for this new technology. Net to support

network or web based applications only that even most applications are coming with network

support. The html and web based application follow up the rhythm of these technologies. It is

used in the proposed system, to fulfill the basic requirement to the application or internet

application. However, asp.net is also used in the proposed system because it is a free resource

and we can develop web based applications very easily with it. JavaScript and MYSQL are free

development tools which add further benefits. MYSQL and JavaScript resources, tutorial,

administrative tools are also available. This software can easily get from the net and can

develop powerful applications.

1.3 Problem Statement

The percentage of people donating blood is increasing day by day due to awareness to donate

blood for those needed. The blood received have to be managed thoroughly so that there will

be no negative effect to the blood receiver once they received blood. From the observations

and interview conducted that have been made during the user requirements phase, it was found

out that there is no interaction medium between a hospital and the public to announce their

blood donation schedule. The blood donation event schedule is normally advertised to the

public so that they are aware of the blood donation campaign period. At the blood house unit,

the staffs and nurses only are informed about the blood donation schedule for each month on

the whiteboard at the blood house. So they are using manual way in informing the schedule.

The problem arises when the space provided is not enough. The medium used to inform the

staff about the schedule of the month is using whiteboard and it is written by using whiteboard

marker. Therefore, the writing tends to become unclear.

Page | 2

1.4 What is “Blood Donation Hub”?

Blood Donation Hub is basically a blood management system. Blood donation hub is a website

where The receiver can find a suitable donor for him/her. It saves the patient's life and saves

time. This website is a nice and simple process to manage blood.

1.5 Objectives

The Blood Donation Hub offers a way to connect donors and receivers. The objectives of this

hub are given below:

1. To find possible donors easily

2. To connect between donors and receivers

3. To find blood on requests

4. To request for blood easily

1.6 Chapter Review

In chapter 1: We talked about the basic things in our project report like what is Blood

Donation Hub, scope of this project, objective of this project, objective of this document,

Development tools etc. We also give an overall preview of the document in this chapter.

In chapter 2: We describe the statistics and background study of the project.

In chapter 3: This chapter describes system design and implementation. Here we discuss

about modules overview like receiver section, donor section and admin section and also

give some table structures. We also give, entities, attributes, relationship, E-R diagram,

Use case diagram and database table.

In chapter 4: The system design parts are designed by unified model language. We fully

documented this part to understand easily for the user and it is described in this chapter.

We discuss UI and implementation. Here we gave some structures and screenshots of our

project in the form design that helps users to use this hub easily. We gave a demo of

admin login page, index page, donor & receiver registration, login page, donor & receiver

profile page, admin dashboard, request page.

In chapter 5: In this chapter we discuss about the physical design and implementation of

the project. We can also see examples of some major codes of the project.

Page | 3

CHAPTER 2

BACKGROUND OF THE PROJECT

 2.1 Introduction

Finding blood donors is a challenging issue in almost every country. Our blood donation

system helps people who need emergency blood from the nearest donor. In the era of social

media, some of the struggles have decreased, but still, when a patient needs blood, he/she has

to contact a blood bank or a compatible blood group of a donor in their circle. However, it is

difficult to find suitable donors within a limited group of people at a given time. Our target is

to make an application where the blood receivers can connect with their nearby donors. We

provide here a registration system for receiver’s & donor’s. First, the donor and receiver will

fill the registration form. There are certain conditions to be fulfilled for filling the registration

form, such as name, valid email Address, valid phone number, blood group, gender (minimum

18 years), password (minimum 8 characters) then it will be successfully created by donors and

receivers. After registration, the donor and receiver will not be able to login to the page until

the admin approves. Admin can delete the registration if he/she wants. Here the receiver

always sends blood requests. So to send a blood request, the receiver must first login to the

page. Then, in order to create a blood request, the receiver has to fulfill certain conditions.

The conditions are name, phone number, the date of blood draw, approximate time, urgent or

pre-collection. Then the receiver will create a blood request by selecting the location of the

hospital that needs blood. Then the receiver can see the notification of the blood request.

2.2 Background Study

Blood donation hub is an online based website. The main purpose of BDH is to provide

necessary blood to all patients on an urgent basis. Finding blood in an emergency situation is

very challenging. Many die from lack of blood. Considering all those situations we got the

inspiration to make this website. There are many websites on the internet about blood donation.

But ours is a little different. We have tried how users can get donors very easily as the location

of the donor can be known through this website. Expectant mothers may need blood. Therefore,

many people want to manage blood donors in advance. But many are in such a situation that

the blood group of someone they know does not match. And even if the blood bank is told in

advance, there is no guarantee that the blood group will be available at the time of need. It may

also happen that the blood of that blood group has been given to an accident patient in an

emergency. But you can keep the donor ready on our website through the pre-collection option.

In this, if the pregnant mother needs blood during labor, it will be available at the right time

without any additional hassle.

Page | 4

2.3 Design Requirements
When we design software or a system, we consider some requirements to make the project

efficient. We have tried to build a user-friendly web application. Our system user interface is

very simple and everyone can use it without facing any problem. For better knowing, we have

drawn a business process model, use case diagram, activity diagram and logical data model.

We have used MySQL for designing our database. For front end design we have used HTML,

CSS. We have used Laravel framework and PHP for back end design.

2.4 Challenges
Every work has some challenges. So, we have to face a small number of challenges too.

 As it’s a Web-based system, so people need to register/login online through any web

connected devices such as computer, laptop, smart phone, tablets otherwise the system

will not be helpful

 If a donor doesn’t check the notification for blood request which is posted by receiver,

then the main motto of this system will fail.

Page | 5

CHAPTER 3

TOOLS AND TECHNOLOGY

3.1 Introduction

In this chapter we will discuss the last phase of the project which is considered the application

and the parallel phase of the design phase, which is about transforming what has been

understood in the analysis phase and what has been outfitted in the design phase into reality.

3.2 Tools & Technology

 Development Tools:

 HTML: HTML stands for Hyper Text Markup Language. HTML is the standard

markup language for creating Web pages. HTML describes the structure of a Web page.

HTML consists of a series of elements. HTML elements tell the browser how to display

the content. HTML allows users to create and structure sections, headings, links,

paragraphs, and more, on a website using various tags and elements. Almost everything

you want to create on a web page can be done using a specific HTML code.

 CSS: It stands for Cascading Style Sheets. CSS describes how HTML elements are to

be displayed on screen, paper, or in other media. CSS saves a lot of work. It can control

the layout of multiple web pages all at once. External stylesheets are stored in CSS files.

CSS is the language for describing the presentation of Web pages, including colors,

layout, and fonts. It allows one to adapt the presentation to different types of devices,

such as large screens, small screens, or printers. CSS is independent of HTML and can

be used with any XML-based markup language.

 jQuery: jQuery is an open-sourced JavaScript library that simplifies creation and

navigation of web applications. It is a lightweight, "write less, do more", JavaScript

library. The purpose of jQuery is to make it much easier to use JavaScript on your

website. jQuery takes a lot of common tasks that require many lines of JavaScript code

to accomplish, and wraps them into methods that you can call with a single line of code.

 JavaScript: JavaScript is a high-level, often just-in-time compiled language that

conforms to the ECMAScript standard. It has dynamic typing, prototype-based object-

orientation, and first-class functions. It is multi-paradigm, supporting event-driven,

functional, and imperative programming styles. It has application programming

interfaces (APIs) for working with text, dates, regular expressions, standard data

structures, and the Document Object Model (DOM). JavaScript is used by programmers

across the world to create dynamic and interactive web content like applications and

browsers. JavaScript is so popular that it's the most used programming language in the

world, used as a client-side programming language by 97.0% of all websites.

Page | 6

 Bootstrap: Bootstrap utilizes Sass for a modular and customizable architecture. Import

only the components you need, enable global options like gradients and shadows, and

write your own CSS with our variables, maps and functions. Bootstrap is a free, open

source front-end development framework for the creation of websites and web apps.

Designed to enable responsive development of mobile-first websites, Bootstrap

provides a collection of syntax for template designs.

 PHP: PHP is an acronym for "PHP: Hypertext Preprocessor" PHP is a widely-used,

open source scripting language. PHP scripts are executed on the server. PHP is free to

download and use. PHP (short for Hypertext Preprocessor) is the most widely used open

source and general purpose server side scripting language used mainly in web

development to create dynamic websites and applications. A PHP framework is a

platform to create PHP web applications. PHP frameworks provide code libraries for

commonly used functions, cutting down on the amount of original code you need to

write.

 Laravel: Laravel attempts to take the pain out of development by easing common tasks

used in the majority of web projects, such as authentication, routing, sessions, and

caching. Laravel aims to make the development process a pleasing one for the developer

without sacrificing application functionality. The best advantages of Laravel include

scalability, rapid page loading, Modular View controller architecture, and security.

Building web applications in Laravel framework will enhance the performance and

provides user-friendly access.

 MySQL: MySQL is a relational database management system (RDBMS) developed by

Oracle that is based on structured query language (SQL). A database is a structured

collection of data. It may be anything from a simple shopping list to a picture gallery or

a place to hold the vast amounts of information in a corporate network. It may be

anything from a simple shopping list to a picture gallery or the vast amounts of

information in a corporate network. To add, access, and process data stored in a

computer database, you need a database management system such as MySQL Server.

 XAMPP: XAMPP is a free and Open-source cross-platform Web Server Solution Stack

built by Apache Friends, which consists mostly of the Apache HTTP Server, MySQL

Database, and interpreters for PHP and Perl scripts. The goal of XAMPP is to build an

easy to install distribution for developers to get into the world of Apache. To make it

convenient for developers, XAMPP is configured with all features turned on.

Page | 7

Front End Design

The front end is normally designed in two parts. The web design and front end web

development. We use HTML, CSS and JavaScript for our front end design. These include

things like fonts, drop-down menus, contract forms etc. In this section we include some home

page front end design.

Back End Design:

The backend is normally designed in two parts

 API

 A database

Users input the data that the application stores in a database that was created on a server.

We basically used PHP.

Supporting Tools:

Page | 8

CHAPTER 4

LOGICAL SYSTEM SPECIFICATION

3.1 Introduction

Blood donation hubs are a vital part of worldwide healthcare. It relates to blood transfusion as

a life-sustaining and life-saving procedure as well as a form of therapeutic phlebotomy as a

primary medical intervention. Over one hundred million units of blood are donated each year

throughout the world. [5] The system allows one to easily access the donors’ information and

make blood donating arrangements easy. It’s a helpful website for patients and donors.

3.2 Modules Overview

Admin Section:
1. Donors and receivers can register

2. Donors and receivers can't login until their registration

3. Admin can delete donors and receivers. if he/she provides any wrong information

4. Admin can make changes on the admin dashboard

5. Admin can approve or delete all blood requests

6. Admin can send selected/verified donors’ information to receivers

7. Admin can view all users' lists (total donors, total receivers and blood requests)

8. Admin can see on his/her dashboard, if the receivers can manage or can’t manage blood

Donor Section:
1. Donors can register

2. Donors can't login until their registration

3. Donors can edit their personal information on their profile

4. Donors can change their status (available or unavailable)

5. Donors can’t see any blood requests if their status remains unavailable

6. Donors can see receiver’s information while accepting blood requests

7. Donors can add their previous blood donating date

Receiver Section:

1. Receivers can register

2. Receivers can't login until their registration

3. Receivers can edit their personal information on their profile

4. Receivers can send blood requests

5. Receivers can switch to donors

6. Receiver can edit or delete his blood request if he wants

7. When the donor accepts the receiver's blood request (after admin approves and sends),

Then he/she can see the details of the donor and accepts if he wants

8. If the receiver manages the blood, then his blood request will be deleted (if he goes

to his profile and clicks on the "managed" option)

Page | 9

3.3 Entities

An entity is an object that exists. It doesn’t have to do anything; it just has to exist. In database

administration, an entity can be a single thing, person, place, or object. Data can be stored about

such entities. A design tool that allows database administrators to view the relationships

between several entities is called the entity relationship diagram (ERD. If you aren’t going to

capture data about something, there’s no point in creating an entity in a database. [3]

3.4 Attributes

An attribute is a property, trait, or characteristic of an entity, relationship, or another attribute.

For example, the attribute Inventory Item Name is an attribute of the entity Inventory Item. An

entity can have as many attributes as necessary. Meanwhile, attributes can also have their own

specific attributes.

For example, the attribute customer address can have the attributes number, street, city, and

state. These are called composite attributes. Note that some top level ER diagrams do not show

attributes for the sake of simplicity. In those that do, however, attributes are represented by

oval shapes.

● Multivalve Attribute: If an attribute can have more than one value it is called a multi valued

attribute. It is important to note that this is different to an attribute having its own attributes.

For example, a teacher entity can have multiple subject values.

● Derived Attribute: An attribute based on another attribute. This is found rarely in ER

diagrams. For example, for a circle, the area can be derived from the radius.

3.5 Relationships

Relationships are how the entities are related to each other. So that records can be associated

with each other in queries or view definitions. A relationship is similar to a parent and a child

within a family. The parent entity has a key value (primary key) that uniquely identifies a record

in one table with other tables or entities that are considered children. The child table or entity

has a foreign key, a column that holds the value of the parent entity. So the two entities joined

the ducting query process.

Page | 10

3.6 E-R Diagram

An entity relationship diagram (ERD) shows the relationships of entity sets stored in a database.

An entity in this context is a component of data. In other words, ER diagrams illustrate the

logical structure of databases. An entity relationship model, also called an entity-relationship

(ER) diagram, is a graphical representation of entities and their relationships to each other,

typically used in computing in regard to the organization of data within databases or

information systems. An entity is a piece of data-an object or concept about which data is

stored.

Fig 3.1: E-R Diagram

Page | 11

3.7 Use Case Diagram

A use case diagram is a graphical depiction of a user's possible interactions with a system. A

use case diagram shows various use cases and different types of users the system has and will

often be accompanied by other types of diagrams as well. The use cases are represented by

either circles or ellipses. The actors are often shown as stick figures.

Fig 3.2: Use case Diagram

Page | 12

3.8 Schema Diagram

The design of the database is called a schema. This tells us about the structural view of the

database. It gives us an overall description of the database. A database schema defines how the

data is organized using the schema diagram. A schema diagram is a diagram which contains

entities and the attributes that will define that schema. A schema diagram only shows us the

database design. It does not show the actual data of the database. Schema can be a single table

or it can have more than one table which is related. The schema represents the relationship

between these tables.

Fig 3.3: Schema Diagram

Page | 13

 3.9 Data-Flow Diagram

A data-flow diagram is a way of representing a flow of data through a process or a system.

The DFD also provides information about the outputs and inputs of each entity and the process

itself. A data-flow diagram has no control flow — there are no decision rules and no loops.

Fig 3.4: Data-flow Diagram (Level-0)

Fig 3.5: Data-flow Diagram (Level-1)

 Process-1:

Fig 3.6: Data-flow Diagram (Level:2)

Page | 14

Process-2:

Fig 3.7: Data-flow Diagram (Level:3)

Process-3:

Fig 3.8: Data-flow Diagram (Level:4)

Page | 15

3.10 Database Table

Donor Table

Table 3.1: Donor Table

Interested Donor Table

Table 3.2: Interested Donor Table

Page | 16

Receiver Table

Table 3.3: Receiver Table

Blood Request Table

Table 3.4: Blood Request Table

Blood Group Table

Table 3.5: Blood Group Table

Page | 17

CHAPTER 5

USER INTERFACE AND IMPLEMENTATION

4.1 Introduction

In this chapter, we will create and develop, review and run our project and also test our

application. The outcome of testing will be provided to verify the application ability and

quality.

4.2 Home Page

Fig 4.1: Home Page

Login and registration can be done from the home page. Receivers can search donors by

location. Donors and blood requests of all blood groups can also be found here.

Page | 18

4.3 Registration Form page

Fig 4.2: Registration Form page

Donors and receivers register here by giving name, email, phone number, address, birthday,

gender, blood group and password.

Page | 19

 4.4 User Login & Admin Login Page

Fig 4.3: User Login & Admin Login Page

From here admin and user login by giving email and password. Admin will be one person so

his/her email ID, password will be fixed so no one else can be an admin.

Page | 20

4.5 Receiver Profile

Fig 4.4: Receiver Profile

It is a receiver profile, where the receiver sends blood requests.

Page | 21

4.6 Blood Request page

Fig 4.5: Blood Request Page

Receiver can send blood request by informing date, approximate time, urgent/pre-collection,

requested blood group, description and location from here.

Page | 22

 4.7 No Interested Donors (from Receiver Profile)

Fig 4.6: Receiver Profile

Here, the receiver sends blood requests successfully but does not find interested donors.

Page | 23

4.8 Blood Managed (from Receiver Profile)

Fig 4.7: Receiver Profile (Blood Managed)

When the receiver's blood is managed, he/she can confirm if he/she wants, and if he/she

confirms, the blood request will be removed from his/her profile.

Page | 24

 4.9 Donor Profile (Status Unavailable)

Fig 4.8: Donor Profile (Status Unavailable)

It is a donor profile. Here the donor will not get any request as long as the status of the donor

is unavailable.

Page | 25

 4.10 Donor Profile (Status Available)

Fig 4.9: Donor Profile (Status Available)

When the donor's status is available, he will receive blood requests and he/she can also accept

the request.

Page | 26

4.11 Donor Profile (Request Cancel)

 Fig 4.10: Donor Profile (Request cancel)

The donor can cancel the blood request in an emergency.

Page | 27

 4.12 Admin Dashboard

Fig 4.11: Admin Dashboard

Page | 28

 4.13 Admin Dashboard (All Donors List)

Fig 4.12: Admin Dashboard (All Donors List)

Page | 29

 4.14 Admin Dashboard (All Receivers List)

Fig 4.13: Admin Dashboard (All Receivers list)

Page | 30

 4.15 Admin Dashboard (Blood Request List)

Fig 4.14: Admin Dashboard (Blood Request List)

Page | 31

CHAPTER 6

CONCLUSION, LIMITATIONS AND FUTURE WORKS

6.1 Conclusion

The system provides a web-based application that is acutely useful for emergency services. It

will come very useful in urgent times by providing donors information searched by location

and blood type. The system consists of a well-maintained database to keep all the registered

records. It also provides news and information about the ongoing coronavirus pandemic. In the

end, it provided us the knowledge regarding the latest technology required to build a web-based

application. During the building of this project, it provided us an awareness of how blood

donation can save lives. This inspired us to donate blood at regular times and also motivate and

persuade our fellow citizens to donate blood. A database has been set up to store historical data

related to donation and reception of blood and also to store data from camps so as to take future

decisions based on concrete analytical results.

6.2 Limitations
Limitations of our project are minimal and manageable, they are:

● There is no automatic page generator.

● There is no automatic menu builder.

● There is no option of live chatting.

● There is no blood test report giving option.

6.3 Future Works
Online system is always changeable. It develops day by day, getting better and easier for

everyone. We believe we can make this system more advanced in the future. The changes we

are going to make in this project are given bellow:

● To add automatic menu builder.

● To add an automatic page generator.

● To add the option of live chatting.

● To add a blood test report giving option.

Page | 32

REFERENCES

[1] Waller, Daniel, et al., "Donating blood for research: a potential method for enhancing

customer satisfaction of permanently deferred blood donors," Blood Transfusion, vol.

15, no. 16, p. 3, 2017.

[2] Guglielmetti Mugion, Roberta, et al., "Promoting the propensity for blood donation

through the understanding of its determinants," BMC Health Services Research, vol.

2, no. 3, pp. 2-3, 2021.

[3] A. M. S. P. C. Stephen Harrell, "Promoting blood donation through social media:

Evidence from Brazil, India and the USA," Social Science & Medicine, vol. 315, no.

213, pp. 4-5, December 2022.

[4] D. M. C. C. Andy Ngo, "Blood Banking and Transfusion Medicine Challenges During

the COVID-19 Pandemic," NatIonal Library of Medicine, vol. 2, no. 4, 2020.

[5] M. L. Science, "My Personal Blood Bank Notebook: A fun blood Bank Journal filled

with promots ranging from silly to fun facts for any medical laboratory scientist or

student," International Kindle Paperwhite, vol. 12, no. 4, p. 120, 2019.

Page | 33

APPENDIX

Login Controller Codes

<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use App\Providers\RouteServiceProvider;

use Illuminate\Foundation\Auth\AuthenticatesUsers;

use Illuminate\Support\Facades\Auth;

class LoginController extends Controller

{

 /*

 |--

 | Login Controller

 |--

 */

 use AuthenticatesUsers;

 /**

 * Where to redirect users after login.

 * @var string

 */

 // protected $redirectTo = RouteServiceProvider::HOME;

 public function redirectTo()

 {

 $role = Auth::user()->role;

 switch ($role) {

 case 'admin':

 return '/admin/dashboard';

 break;

 default:

 return '/profile';

 break;

 }

 }

 /**

 * Create a new controller instance.

 * @return void

 */

 public function __construct()

 {

 $this->middleware('guest')->except('logout');

 }

}

Page | 34

Registration Controller Codes

<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use App\Models\Donor;

use App\Models\Reciever;

use App\Providers\RouteServiceProvider;

use App\Models\User;

use Illuminate\Foundation\Auth\RegistersUsers;

use Illuminate\Support\Facades\Hash;

use Illuminate\Support\Facades\Validator;

class RegisterController extends Controller

{

 /*

 |--

 | Register Controller

 |--

 */

 use RegistersUsers;

 /**

 * Where to redirect users after registration.

 *

 * @var string

 */

 protected $redirectTo = RouteServiceProvider::HOME;

 /**

 * Create a new controller instance.

 *

 * @return void

 */

 public function __construct()

 {

 $this->middleware('guest');

 }

 /**

 * Get a validator for an incoming registration request.

 *

 * @param array $data

Page | 35

 * @return \Illuminate\Contracts\Validation\Validator

 */

 public static $rules_save = [

 'class_subjects' => ['required', 'regex:/[0-9]([0-9]|-(?!-))+/'],

];

 protected function validator(array $data)

 {

 return Validator::make($data, [

 'name' => 'required|max:255',

 'email' => 'required|unique:users|max:255',

 'address' => 'required',

 'phone' => ['required', 'regex:/^(?:\+88|88)?(01[3-9]\d{8})$/'],

 'birthday' =>

 $data['role'] == 'donor' ? 'required|date|before:-18 years' : '',

 'password' => 'required|min:8|confirmed',

 'role' => 'required',

 'blood_group_id' =>

 $data['role'] == 'donor' ? 'required' : '',

 'password' => 'required|min:8|confirmed',

]);

 }

 /**

 * Create a new user instance after a valid registration.

 *

 * @param array $data

 * @return \App\Models\User

 */

 protected function create(array $data)

 {

 // valid phone number

 $user = User::create([

 'name' => $data['name'],

 'email' => $data['email'],

 'phone' => $data['phone'],

 'address' => $data['address'],

 'role' => $data['role'],

 'blood_group_id' => (int)$data['blood_group_id'] ?: null,

 'birthday' => $data['birthday'],

 'password' => Hash::make($data['password']),

Page | 36

]);

 if ($user) {

 if ($user->role == 'donor') {

 Donor::create([

 'user_id' => $user->id,

]);

 } else {

 Reciever::create([

 'user_id' => $user->id,

]);

 }

 }

 return $user;

 }

}

Page | 37

Blood Request Controller Codes

<?php

namespace App\Http\Controllers\reciever;

use App\Http\Controllers\Controller;

use Illuminate\Http\Request;

use App\Models\BloodGroup;

use App\Models\BloodRequest;

use App\Models\InterestedDonor;

use Illuminate\Support\Facades\Auth;

class BloodRequestController extends Controller

{

 public function index()

 {

 $bloodGroups = BloodGroup::all();

 $bloodRequests = BloodRequest::where('active', 1)->latest()-

>join('blood_groups', 'blood_groups.id', '=', 'blood_requests.blood_group_id')-

>select('blood_requests.*', 'blood_groups.name as blood_group')-

>simplePaginate(10);

 return view('blood_request_page', [

 'bloodGroups' => $bloodGroups,

 'bloodRequests' => $bloodRequests

]);

 }

 public function bloodRequest(Request $request)

 {

 if ($request->isMethod('GET')) {

 $user = Auth::user();

 $bloodGroups = BloodGroup::all();

 return view('frontend.user.reciever.blood_request', ['user' => $user,

'bloodGroups' => $bloodGroups]);

 } else if ($request->isMethod('POST')) {

 // dd($request->all());

 $request->validate([

 'blood_group_id' => 'required',

 'location' => 'required',

 'phone' => 'required',

 'name' => 'required',

 'email' => 'required|email',

 'date' => 'required',

Page | 38

 'time' => 'required',

 'description' => 'required',

]);

 // // dd((int)$request->blood_group_id);

 // dd($request->all());

 // // dd('valid');

 $bloodRequest = new BloodRequest();

 $bloodRequest->blood_group_id = (int)$request->blood_group_id;

 $bloodRequest->location = $request->location;

 $bloodRequest->latitude = $request->latitude;

 $bloodRequest->longitude = $request->longitude;

 $bloodRequest->phone = $request->phone;

 $bloodRequest->name = $request->name;

 $bloodRequest->only_show_to_authorized = $request-

>only_show_to_authorized === 'on' ? 1 : 0;

 $bloodRequest->email = $request->email;

 $bloodRequest->flag = $request->flag;

 $bloodRequest->date = $request->date;

 $bloodRequest->time = $request->time;

 $bloodRequest->description = $request->description;

 $bloodRequest->reciever_id = Auth::user()->id;

 $bloodRequest->save();

 return redirect()->route('user_profile')->with('success', 'Blood

Request Created Successfully');

 }

 }

 public function bloodRequestEdit(Request $request)

 {

 if ($request->isMethod('GET')) {

 $user = Auth::user();

 $bloodGroups = BloodGroup::all();

 $bloodRequest = BloodRequest::where('id', $request->id)->first();

 return view('frontend.user.reciever.edit_blood_request', [

 'user' => $user, 'bloodGroups' => $bloodGroups, 'bloodRequest' =>

$bloodRequest

]);

 } else if ($request->isMethod('POST')) {

 $request->validate([

 'blood_group_id' => 'required',

Page | 39

 'location' => 'required',

 'phone' => 'required',

 'name' => 'required',

 'email' => 'required|email',

 'date' => 'required',

 'time' => 'required',

 'description' => 'required',

]);

 $bloodRequest = BloodRequest::where('id', $request->id)->first();

 $bloodRequest->blood_group_id = (int)$request->blood_group_id;

 $bloodRequest->location = $request->location;

 $bloodRequest->latitude = $request->latitude;

 $bloodRequest->longitude = $request->longitude;

 $bloodRequest->phone = $request->phone;

 $bloodRequest->name = $request->name;

 $bloodRequest->only_show_to_authorized = $request

 >only_show_to_authorized === 'on' ? 1 : 0;

 $bloodRequest->email = $request->email;

 $bloodRequest->flag = $request->flag;

 $bloodRequest->date = $request->date;

 $bloodRequest->time = $request->time;

 $bloodRequest->description = $request->description;

 $bloodRequest->reciever_id = Auth::user()->id;

 $bloodRequest->update();

 // return redirect()->back()->with('success', 'Blood Request Upated

Successfully');

 return redirect()->route('user_profile')->with('success', 'Blood

Request Upated Successfully');

 }

 }

 public function delete(Request $request)

 {

 $bloodRequest = BloodRequest::find($request->id);

 $bloodRequest->delete();

 return response()->json([

 'success' => 'Blood Request Deleted Successfully',

 'status' => 200,

]);

 }

Page | 40

 public function bloodManage($id)

 {

 $bloodRequest = BloodRequest::find($id);

 $bloodRequest->managed = 1;

 $bloodRequest->save();

 return redirect()->back()->with('success', 'congratulation! You

successfully managed your blood!');

 }

 public function getBloodRequestById(Request $request)

 {

 $bloodRequest = BloodRequest::find($request->id);

 $bloodGroup = BloodGroup::find($bloodRequest->blood_group_id);

 $bloodRequest->blood_group_name = $bloodGroup->name;

 return response()->json([

 'success' => 'Blood Request By Id Retrived Successfully',

 'data' => $bloodRequest,

 'status' => 200,

]);

 }

 public function interestedDonorRequest(Request $request)

 {

 $user = Auth::user();

 if (!$user) {

 return response()->json([

 'success' => false,

 'message' => 'UnAuthorized. Please Login First.',

 'status' => 401,

]);

 }

 if ($user->role === 'donor') {

 $bloodRequest = BloodRequest::find($request->id);

 $alreadyInetrested = InterestedDonor::where('interested_donor_id',

$user->id)->where('blood_request_id', $bloodRequest->id)->first();

 // dd($alreadyInetrested);

 if ($alreadyInetrested) {

 return response()->json([

Page | 41

 'success' => false,

 'message' => 'You Already Interested in This Blood Request',

 'status' => 405,

]);

 }

 if ($bloodRequest->reciever_id == $user->id) {

 return response()->json([

 'success' => false,

 'message' => 'You made this request, so you can not request

interest in it',

 'status' => 405,

]);

 }

 if ($user->blood_group_id === $bloodRequest->blood_group_id) {

 $interestedDonor = new InterestedDonor();

 $interestedDonor->interested_donor_id = $user->id;

 $interestedDonor->blood_request_id = $bloodRequest->id;

 $interestedDonor->save();

 return response()->json([

 'success' => true,

 'message' => 'Your Interested In This Blood Request has been

sent to the Reciever',

 'status' => 200,

]);

 } else {

 return response()->json([

 'success' => false,

 'message' => 'Your blood group does not match with this blood

request',

 'status' => 405,

]);

 }

 } else {

 return response()->json([

 'success' => false,

 'message' => 'You are not a donor. Please change your role as

donor and try again',

 'status' => 405,

]);

 }

 }

Page | 42

 public function requestAccetByDonor($id)

 {

 $user = Auth::user();

 if ($user && $user->role == 'donor') {

 $bloodRequest = BloodRequest::find($id);

 $alreadyInetrested = InterestedDonor::where('interested_donor_id',

$user->id)->where('blood_request_id', $bloodRequest->id)->first();

 // dd($alreadyInetrested);

 if ($alreadyInetrested) {

 return redirect()->back()->with('error', 'You have already

accepted');

 }

 if ($bloodRequest->reciever_id == $user->id) {

 return redirect()->back()->with('error', 'You made this request,

so you can not request interest in it');

 }

 if ($user->blood_group_id === $bloodRequest->blood_group_id) {

 $interestedDonor = new InterestedDonor();

 $interestedDonor->interested_donor_id = $user->id;

 $interestedDonor->blood_request_id = $bloodRequest->id;

 $interestedDonor->save();

 return redirect()->back()->with('success', 'Your Interested In

This Blood Request has been sent.');

 } else {

 return redirect()->back()->with('error', 'Your blood group does

not match with this blood request');

 }

 } else {

 return redirect()->back()->with('error', 'You are not a donor. Please

change your role as donor and try again');

 }

 }

 public function requestCancelByDonor($id)

 {

 $user = Auth::user();

 if ($user && $user->role == 'donor') {

 $bloodRequest = BloodRequest::find($id);

Page | 43

 $alreadyInetrested = InterestedDonor::where('interested_donor_id',

$user->id)->where('blood_request_id', $bloodRequest->id)->first();

 // dd($alreadyInetrested);

 if ($alreadyInetrested && !$alreadyInetrested->accepted) {

 $alreadyInetrested->delete();

 return redirect()->back()->with('success', 'You have cancelled

the request');

 } else {

 return redirect()->back()->with('error', 'The Request already

accepted. You are not allowed to cancel this request');

 }

 } else {

 return redirect()->back()->with('error', 'You are not a donor. Please

change your role as donor and try again');

 }

 }

 public function interestedDonors(Request $request)

 {

 $user = Auth::user();

 $interestedDonor = [];

 if ($user->role == 'reciever') {

 $interestedDonor = InterestedDonor::where('blood_request_id',

$request->id)->join(

 'users',

 'interested_donors.interested_donor_id',

 '=',

 'users.id'

)->select(

 'interested_donors.*',

 'users.name as donor_name',

 'users.phone as donor_phone',

 'users.email as donor_email'

)->get();

 return response()->json([

 'success' => true,

 'data' => $interestedDonor,

Page | 44

 'status' => 200,

]);

 }

 $interestedDonor = InterestedDonor::where('blood_request_id', $request-

>id)->join(

 'users',

 'interested_donors.interested_donor_id',

 '=',

 'users.id'

)->select(

 'interested_donors.*',

 'users.name as donor_name',

 'users.phone as donor_phone',

 'users.email as donor_email'

)->get();

 // dd($interestedDonor);

 return response()->json([

 'success' => true,

 'data' => $interestedDonor,

 'status' => 200,

]);

 }

 public function acceptInterestedDonors(Request $request)

 {

 $interestedDonor = InterestedDonor::where('blood_request_id', $request-

>bloodRequestId)->where('interested_donor_id', $request->donorId)->first();

 if ($interestedDonor) {

 if ($interestedDonor->accepted == 1) {

 $interestedDonor->accepted = 0;

 $interestedDonor->update();

 return response()->json([

 'success' => true,

 'message' => 'canceled',

 'status' => 200,

]);

 } else {

 $interestedDonor->accepted = 1;

 $interestedDonor->update();

Page | 45

 return response()->json([

 'success' => true,

 'message' => 'accepted',

 'status' => 200,

]);

 }

 } else {

 return response()->json([

 'success' => false,

 'message' => 'Something went wrong',

 'status' => 405,

]);

 }

 }

}

