Re-Usage Of Waste Foundry Sand In Medium Strength Concrete

SONARGAON UNIVERSITY DEPARTMENT OF CIVIL ENGINEERING

Submitted By

Name	ID
MD AL-IMRAN	BCE-1602008011
MAHMUDUR RAHMAN ZIHAD	BCE-1602008230
MD. TANVIR HOSSAIN	BCE-1602008191
ASHRAFUZZAMAN ARIF	BCE-1503006006
ABDUR GAFFAR	BCE-1602008176

Supervised by

MD. LUTFOR RAHMAN

Assistant Professor, Department of Civil Engineering Sonargaon University (SU) 147/I, Green Road, Dhaka-1215 FALL-2019

LETTER OF TRANSIMITTAL

То

Md. Lutfor Rahman Assistant Professor, Head, Supervisor, Project & Thesis Head of Civil Engineering Department Sonargaon University

Subject: Submission of Thesis Report

Dear Sir, With profound reference towards the dignity of yours, we are submitting thesis paper on " Re-usage of waste foundry sand in high-strength concrete " Thank you Sir for assigning us with this report.

We are grateful and thankful to you for the kind hand of help, support and guidance that you extended to me while preparing this report and always during the course.

I hope and pray that you would be kind enough to redirect us if there is any mistake anywhere in way Sincerely yours,

	Section: 8A+8E
Name	ID
MD AL-IMRAN	BCE-1602008011
MAHMUDUR RAHMAN ZI	HAD BCE-1602008230
MD. TANVIR HOSSAIN	BCE-1602008191
ASHRAFUZZAMAN ARIF	BCE-1503006006
ABDUR GAFFAR	BCE-1602008176

Re-Usage of Waste Foundry Sand In Medium-Strength Concrete

A THESIS BY

MD AL-IMRANBCE-1602008011MAHMUDUR RAHMAN ZIHADBCE-1602008230MD. TANVIR HOSSAINBCE-1602008191ASHRAFUZZAMAN ARIFBCE-1503006006ABDUR GAFFARBCE-1602008176

In partial fulfillment of the requirement for the degree of Bachelor of Science (B.Sc.) in Civil Engineering FALL-2019

DEDICATED TO OUR PARENTS & TEACHERS

SONARGAON UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE

The thesis titled "Re-usage of waste foundry sand in high-strength concrete", Submitted by Md Al-Imran, Mahmudur Rahman Zihad, Md. Tanvir Hossain, Ashrafuzzaman Arif & Abdyr Gaffar, Session: Fall-2019 has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Bachelor of Science (B.Sc.) in Civil Engineering.

Md. Lutfor Rahman

Assistant Professor, Head, Supervisor, Project & Thesis Head of Civil Engineering Department Sonargaon University

DECLARATION

We do hereby solemnly declare that the work presented in this report has been carried out by us under the supervision of **Md. Lutfor Rahman**(Assistant Professor, Head of Civil Engineering Department); we have tried our best to make the report with accurate with information and relevant data.We hereby ensure that, the work that has been presented dose not breach any existing copyright. We further undertake to indemnify the university against any loss or damage arising from breach of the forgoing obligation.

MD AL-IMRAN BCE-1602008011

MAHMUDUR RAHMAN ZIHAD BCE-1602008230

MD. TANVIR HOSSAIN BCE-1602008191

ASHRAFUZZAMAN ARIF BCE-1503006006

ABDUR GAFFAR BCE-1602008176

ACKNOWLEDGEMENT

At first we would like to express eternal gratitude to the Almighty for the successful completion of this study.

We would like to express our earnest gratitude to our supervisor, **Md. LutforRahman** (Assistant Professor, Head of Civil Engineering Department) for giving us an opportunity to work on such an important topic. There continuous guidance, essential suggestions and invaluable judgment are greatly acknowledged. Their keen interest in this topic and wholehearted support on our effort was a source of stimulation to carry out the study. We consider ourselves fortunate to work under his supervision.

We are extremely indebted to Assistant Professor **Md. Lutfor Rahman**, Head of Civil Engineering Department, Sonargaon University (SU) for providing necessary infrastructural and resources to accomplish our research work.

There was no way that would have been possible to successfully finished to this research work without help and support of dedicated technical stuffs of the Civil Engineering Department laboratory for their kind and sincere co-operation throughout the experimental work.

At the same time, we are greatly indebted to Professor **Dr. Md. Abul Basher**(Pro-Vice-Chancellor of Sonargaon University) for his continuoussupport to carry out our study and permitted us to use all types of facilities as well as laboratory.

The authors are grateful to their parents and family for their deep support and continuous encouragement and patience that helped them to be what they are today.

<u>The Authors</u> MD AL-IMRAN MAHMUDUR RAHMAN ZIHAD MD. TANVIR HOSSAIN ASHRAFUZZAMAN ARIF ABDUR GAFFAR

ABSTRACT

In this study, the potential re-use of waste foundry sand in high-strength concrete production was investigated. Because Concrete is currently one of the most widely used construction material. Mainly our research was for take a decision to use this concrete as a medium-strength concrete with decrease the materials costing by use a waste (valueless) materials which is Foundry Sand. Foundry Sand produce from Re-Rolling mill. Billet heat by 1200-1500 degree Celsius Temperature to produce MS Bar, Angle etc. Then the fracture of the Billet (like as Rust) fall down and finally it's the Foundry Sand.

So we used Foundry sand (which is a waste materials & has no value) as a alternative of Fine Aggregate. For use it we can decrease the concrete costing.

The natural fine-sand is replaced with waste foundry sand (50%, 60%, 70% and 100%). The findings result from a series of test program has shown increasing in compressive strength which is directly related to waste foundry inclusion in concrete. Nevertheless the concrete with 10% waste foundry sand exhibits almost similar results to that of the control one. The workability of the fresh concrete decreases with the increase of the waste foundry sand ratio.

The obtained results satisfied the acceptable limits set by the American Concrete Institute (ACI), which is for normal concrete is 20 Mpa to 25 Mpa and we got the strength by use of Foundry Sand is 25.08 Mpa. We used the different percentage of Foundry Sand replaced by Fine Aggregate that's 50%, 60%, 70% and 100% In concrete mix we used W/C ratio 0.48, concrete mix ratio was 1:1.5:3. Compressive strength calculation of all those samples and their comparison was the basic theme of the research. For this purpose cylinders were casted and checked under Universal Testing Machine (UTM) for compressive strength.

Table of Contents

Chapter]	ľ
-----------	---

1.1 General	1
1.2 Background	2
1.3 Objectives of the Study	3
1.4 Methodology	4
1.5 Research Flow Diagram	6
1.6 Research Significance	7

Chapter -II

2.1 General	8
2.2 Refractory Sands	9
2.3 Types of Refractory	9
2.4 Refractory sand grains	10
2.5 Uses of Foundry Sand	10
2.5.1 Foundry Sand Grain Shape	11
2.6. Beneficial Application Of Foundry Sand	12
2.6.1 Structural Fill	12
2.6.2 Manufacturing another Product	12
2.6.3 Soil Manufacturing and Amendment	13
2.6.4 Landfill Uses	13
2.6.5 Pipe Bedding and Backfill	13
2.6.6 Asphalt work	13
2.6.7 Portland Cement	14
2.6.8 Rock Wool	14
2.6.9 Fine Aggregate for Concrete Block	14
2.6.10 Hydraulic Barrier In Landfill Final Cover	14

Chapter -III

Molding Sand

3.1 Constituents of molding sand	19
3.2 Molding material	19
3.3 Silica sand	19
3.4 Moisture	20
3.5 Additives.	20

Chapter -IV

Experiential Materials

4.1 Properties of molding sand	
4.1.1 Refractoriness	21
4.1.2 Permeability	21
4.1.3 Cohesiveness	22
4.1.4 Green strength	22
4.1.5 Dry strength	22
4.1.6 Flow ability or plasticity	22
4.1.7 Adhesiveness	
4.1.8 Collapsibility	23
4.1.9 Miscellaneous properties	23
4.2 Fine aggregate	
4.2.1 Fineness Modulus	27
4.3Cement	
4.4Coarse aggregate	
4.5Water	
4.6. Mix proportion	29
4.6.1 Mixing and Casting of Sample Concrete	30
4.6.3 Curing of Specimen	31
4.7 Experiments and Testing	
4.7.1Curing of Concrete Cylinder	

Chapter -V

Results & Discussion

5.1 Slump Cone test results	33
5.2 Compaction factor test results	35
5.3 Compressive strength test	36
5.3.1 Compressive Strength for 14 th day	36
5.3.2 Compressive Strength for 21 th day	36
5.3.2.1 Compressive Strength for 21 th day with curing	37
5.3.3 Compressive Strength for 28 days	41
5.3.3.1 Compressive Strength for 14 days curing after Compressive Strength	41
5.3.3.2 Compressive Strength for 28 th days with curing	42
5.3.3 Compressive Strength for dry	43
5.3.4.1 Compressive Strength for 14 th with dry	43
5.3.4.2 Compressive Strength for 28 th day with dry	43
5.4 Fracture surface	45
5.5. Water Absorption	47

Chapter -VI

Conclusions and Recommendations

6.1: CONCLUSIONS	49
6.2: FUTURE RECOMMENDATIONS	50
6.3 REFERENCES	51
Appendix-I	52

LIST OF FIGURE

Fig:1.0- Waste Foundry Sand	04
Figure 1.1(a):- Universal Testing Machine (UTM) & Sieve Analysis	04
Figure:- 1.2 Slump Test	05
Figure:- 1.3 Cylinder Compact & Curing	05
Figure 1.2: Flow diagram of methodology	05
Figure 2.1:- Some Book About Foundry Sand in below	09
Figure 2.5 (1):- Flow able fill	16
Figure 2.5 (2):- Road Embankment	16
Figure 2.5 (3):-Hydraulic Barrier in Landfill Final Cover	17
Figure 2.5 (4):- Structural Fill	17
Figure 2.5 (5):-Application of Foundry Sand	18
Figure 2.5 (6):-Asphalt work	18
Figure 2.5 (7):-Pipe Bedding and Backfill	18
Figure 4.4 (1):- Roughing Mill of Re-Rolling Mill from where we get the Foundry	23
Figure 4.4 (2):- Inter Mill & Outer Mill of Re-Rolling Mill from where we get the Foundry Sa	24
Figure 4.4 (3):- Molten metal gets poured into the sand-based molds during sand casting	24
Figure. 4.4 (4): Waste Foundry Sand	20
Figure: 4.5 Sylhet Sand	26
Figure 4.6: The Cement which used in the Concrete	28
Figure 4.7:- 25mm Downgrade Stone chips	29
Figure 5.1:- The slump test	33
Figure 5.2:- fracture surface	47

LIST OF TABLE

Table 4.1. Physical properties of waste foundry sand	
Table 4.2. Properties of Fine Aggregate	26
Table: 4.2.1 Fineness Modulus	27
Table 4.3. Properties of cement	27
Table 4.4. Properties of Coarse Aggregate	22
Table 4.5 pH Value Test.	23
Table 4.6. Mix Proportion (M20)	23
Table4. 7. Mix Proportions of Concrete	24
Table5.1.Workabilityof all mixtures.	26
Table 5.2. Compaction Factor Test (WFS).	27
Table5.3.1 Compressive Strength for 14 th day	28
Table 5.3.2.1 Compressive Strength 21 th day with curing	29
Table 5.3.2.2Compressive Strength for 14 days curing after Compressive Strength test 21 th	
days	31
Table 5.3.3.1 Compressive Strength for 14 days curing after Compressive Strength test 28 th	
days	32
Table 5.3.3.2 Compressive Strength 28 th days with curing	33
Table 5.3.4.1 Compressive Strength 14 th day with dry	34
Table 5.3.4.2 Compressive Strength 28 th day with dry	35

LIST OF GRAPH

GRAPH 4.1 Mix Proportions of Concrete	32
GRAPH 5.1 Workability of all mixtures	34
GRAPH 5.2 Compaction Factor Test (WFS &NS)	35
Graph 5.3.1 Conventional concrete SL No vs Failure load (KN)	37
Graph 5.3.2. Conventional concrete SL No vs Failure load (KN)	. 38
Graph 5.3.2 Conventional concrete vs Concrete Weight (gm)	38
Graph 5.3.2. Conventional concrete SL No vs Load (KN)	40
Graph 5.3.3.1 . Conventional concrete SL No vs Failure load(KN)	42
Graph 5.3.3.2 Conventional concrete SL No vs Failure load(KN)	43
Graph 5.3.4.1 Conventional concrete SL No vs Failure load(KN)	44
Graph 5.3.4.2 Conventional concrete SL No vs Failure load(KN)	45