CERTIFICATION

This is to certify that the B.Sc. thesis entitled "LPG Refrigeration and Burner System with Low Operating Cost" submitted by this group, Md Aourongojeb Khan, student id: BME1901017092, Jahidul Islam, student id: BME1901017159, Biplob Kumar Sinha, student id: BME1901017160, Anik Kumar Sen student id BME1901017162, Ayub Ali student id BME1901017454.

The thesis represents an independent and original work on the part of the candidates.

The whole work of this thesis has been planned and carried out by this group under the supervision and guidance of Prof. Md. Mostofa Hossain, Sonargaon University (SU), Dhaka, Bangladesh.

.....

Md. Mostofa Hossain Professor Head of The Department Department of Mechanical Engineering Sonargaon University (SU)

DECLARATION

It is here by declared that no part of this thesis bearers the copyright violation and no plagiarism opted during the course of material preparation. The entire works has been planned and carried out under the thesis supervisor of the honorable Professor, Head of the Department Md. Mostofa Hossain Department of Mechanical Engineering. Sonargaon University (SU), Dhaka, Bangladesh. The content of this thesis is submitted by the group, Md Aourongojeb Khan, student id: BME1901017092, Jahidul Islam, student id: BME1901017159, Biplob Kumar Sinha, student id: BME1901017160, Anik Kumar Sen student id BME1901017162, Ayub Ali student id BME1901017454.

Only for the fulfillment of the course of "LPG Refrigeration and Burner System with Low Operating Cost" and no part of this is used anywhere for the achievement of any academic Degree or Certificate.

MD AOURONGOJEB KHAN BME1901017092 Department of Mechanical Engineering JAHIDUL ISLAM BME1901017159 Department of Mechanical Engineering

BIPLOB KUMAR SINHA BME1901017160 Department of Mechanical Engineering ANIK KUMAR SEN BME1901017162 Department of Mechanical Engineering

AYUB ALI BME1901017454 Department of Mechanical Engineering

ACKNOWLEDGMENT

We are auspicious that we had the kind association as well as supervision of Md. Mostofa Hossain, Professor Head of The Department, Department of Mechanical Engineering, Sonargaon University whose hearted and valuable support with best concern and direction acted as necessary recourse to carry out our project.

We would like to convey our special gratitude to Prof. Dr Md Alamgir Hossain, Dean, Faculty of Science and Engineering for his kind concern and precious suggestions.

We are also thankful to all our teachers during our whole education, for exposing us to the beauty of learning.

Finally, our deepest gratitude and love to my parents for their support, encouragement, and endless love

ABSTRACT

In current situation supply of continuous electricity is a major problem in several areas as well as city also. At such places, this project will be very helpful for refrigeration various item like food, medicine, etc. Refrigerator became the daily part of our life. Its usage is increasing day by day. On the other side, its harmful effect to environment also increasing. We need to reduce this harmful effect, but we can't avoid using refrigerator. Rather than we can use some other techniques to produce refrigeration effect and also reduce usage of electricity.

The Objectives of this project "LPG Refrigeration and Burner System with Low Operating Cost" are: Compare the important characteristics between LPG refrigeration system and traditional refrigeration system, to obtain the characteristic benefits of LPG refrigerant, to determine the COP of refrigerator using LPG as refrigerant, to benefit the Cooling effect at free of cost by eliminating the compressor.

Our proposed is very simple type of refrigeration system, the high-pressure LPG is passing through a capillary tube and expands. After expansion the phase of LPG is changed and converted from liquid to gas and then it passes through the evaporator where it absorbs the heat and produces the refrigerating effect. After evaporator it passes through the gas burner where it burns.

We were able to do a successful trial and got some positive output from the setup. We also try to run gas cylinder at lean position and got some amazing result but there are some limitations at this time.

TABLE OF CONTENTS

Title	Page No
A. Certification	i
B. Declaration	ii
D. Acknowledgment	iii
E. Abstract	iv
F. Table of Contents	v-vii
G. List of Figures	viii
H. List of Tables	ix

Chapter 01

INTRODUCTION

1.1 Introduction	01
1.2 Research Problem Statement	01
1.3 Objective	02
1.4 Scope of Work	02
1.5 Methodology	02-03

Chapter 2

LITERATURE REVIEW

2.1 Literature Review	4

Chapter 3

REFRIGERATION & TYPES OF REFRIGERATION SYSTEMS

3.1 Refrigeration	05
3.2 Natural Refrigeration	05
3.3 Evaporative Cooling	05
3.4 Cooling by Salt Solutions	05
3.5 Domestic Refrigeration Systems	06
3.6 Vapor Absorption Refrigeration Systems	07
3.7 Gas Cycle Refrigeration	06-07
3.8 Steam Jet Refrigeration System	07

Chapter 4

VAPOR COMPRESSION REFRIGERATION SYSTEMS

4.1 Vapor Compression Refrigeration Systems	08
4.2 Working of VCR System	08
4.3 Mechanism of Simple Vapor Compression Refrigeration System	08-09
4.4 Simple Vapor Compression Refrigeration Cycle	10
4.5 Types of Refrigerants Used in Vapour Compression Systems	10-11
4.6 Vapor Compression Cycle Component	11

Chapter 5 FUNDAMENTALS OF REFRIGERATION

Title	Page No
5.1 Refrigeration and Second Law of Thermodynamics	12
5.2 Second Law of Thermodynamics	12
5.3 'Clausius' Statement of Second Law	12
5.4 Kelvin-Planck Statement of Second Law	12
5.5 Refrigerants	13

Chapter 6

REFRIGERANT SELECTION CRITERIA

6.1 Refrigerant Selection Criteria	14
6.2 Thermodynamics and Thermo Physical Properties	14
6.3 Environmental and Safety Properties	14

Chapter 7

LPG REFRIGERATION

15
15
15
16
16
16
17
17
18
18
19
19
20
20

Chapter 8

CONSTRUCTION AND WORKING PRINCIPLE OF LPG REFRIG	ERATOR
8.1 Construction of LPG Refrigerator	21
8.2 Working of LPG Refrigerator	21-22

Chapter 9 DESIGN ANALYSIS

9.1 Design Analysis	23
9.2 Copper Tubes	23
9.3 Capillary Tube	24
9.4 Evaporator	24

Chapter 10

DATA COLLECTION, ANALYSIS AND DISCUSSION

Title	Page No
10.1 Data Collection	25-27
10.2 Analysis	28
10.3 Compare with Domestic Refrigerator	29
10.3 Discussion	29
10.3.1 Advantages	29
10.3.2 Disadvantages	29
10.3.3 Application	29

Chapter 11

CONCLUSION AND RECOMMENDATION

11.1 Conclusion	30
11.1 Reference	31

Title	Page No
Figure. 1 Methodology	03
Figure. 2 T-S diagram of simple vapor compression refrigeration cycle.	09
Figure. 3 P-H diagram of simple vapor compression refrigeration cycle	09
Figure. 4 Vapor Compression Cycle Component	11
Figure. 5 LPG Cylinder	16
Figure. 6 Capillary Tube	17
Figure. 7 High pressure pipes	17
Figure. 8 Pressure gauges	18
Figure. 9 Evaporator	18
Figure. 10 High Pressure Regulator	19
Figure. 11 Digital Thermometer	19
Figure. 12 Strainer	20
Figure. 13. Gas Burner	20
Figure. 14 Diagram of LPG Refrigeration System	21
Figure. 15 LPG refrigeration and heating system	22
Figure. 16 Evaporator Temperature Vs Time	25
Figure. 17 Outlet Pressure Vs Evaporator Temperature	18
Figure. 18 Time vs Outlet Pressure	18
Figure. 19 Evaporator Temperature Vs Time When Gas cylinder is upside down	27
Figure. 17 Pressure-Enthalpy Diagram	28

LIST OF FIGURES

LIST OF TABLES

Title	Page No
Table. 1 Properties of commonly used refrigerants	11
Table. 2 Performance of commonly used refrigerants	11
Table. 3. Typical specification of LPG marketed by TOTALGAZ in Bangladesh	15
Table. 4. Data Collection Normal Position	25
Table. 5. Data Collection Upside Down Position	27