EFFECT OF CURING DAYS ON CONCRETE MADE BY PARTIALLY REPLACED CEMENT BY FLY ASH

A THESIS

BY

GROUP-02(B1)Submitted to the Department of Civil Engineering, Sonargaon University(SU), Dhaka in partial fulfillment of the requirements for the degree

of

B.Sc. IN CIVIL ENGINEERING

Sonargaon University (SU) Department of Civil Engineering

FALL, 201

LETTER OF TRANSMITTAL

To Tafsirojjaman Lecturer Department of Civil Engineering Sonargaon University (SU) 29/1, Kawran Bazar Dhaka-1215, Bangladesh.

Subject: Submission of Project Report.

Sir,

This is our great pleasure that we are submitting here with the project report on 'Effect Of Curing Days On Concrete Made By Partially Replaced Cement By Fly Ash" It is an important topic. The project report has been done according to the requirement and guidelines of the Sonargaon University (SU).

We hope that this report will certainly help you in evaluating our project report on "Effect Of Curing Days On Concrete Made By Partially Replaced Cement By Fly Ash We would be very glad to provide any assistance in interpreting any part of the paper, whenever necessary.

Thanking You Sincerely your

tanno

Md. Anwar Hossain D-BCE-1402002190 Leader (Goroup - 02 (B 1)

DECLARATION

This is to declare that the work and material presented in the report has been carried out by us and has not previously been submitted to any University/College/Organization for any Academic qualification

We herby ensure that the work that has been presented does not breach existing copyright. We undertake to indemnify the university against any loss or damage arising from breach of the foregoing obligation.

Thanking You Sincerely your

2.----

4...

Group-02(Batch-B1)

1.--

Md. Anwar Hossain ID-BCE-1402002190

Friting

Md. Saifullah Al Touhid ID-BCE-1402002194

1061 3.____

Md. Rezaul Karim ID-BCE-1402002058

Md. Abdur Razzaque ID-BCE-1402002059

e4e

5.....

Md. Azizur Rahman ID-BCE-1402002060

Department of Civil Engineering Sonargaon University (SU)

Department of Civil Engineering Sonargaon University (SU)

CERTIFICATION

This is to certify that the project paper on "Effect Of Curing Days On Concrete Made By Partially Replaced Cement By Fly Ash " is the bona fide record of project work done others for partial fulfillment of the requirement of the degree of B.Sc. in Civil Engineering from the Sonargaon University(SU).

This project work has been carried out under my guidance and is a record of the successful work.

Supervisor

2762374

Tafsirojaman

De-a:tment of Civil Engineering University (SU) KawranBazar, Dhaka-1215,

ACKNOWLEDGEMENT

All praises and profound gratitude to the almighty Allah who is the most beneficent and the most merciful for allowing great opportunity and ability to bring this effort to fruition safety and peacefully.

We sincerely acknowledge and express my deep sense of gratitude to Tafsirojjaman (Lecturer) the guide of this project. As a guide he gave a maximum help and coordination in finishing the project work. With his past years of experience and teaching steered us to come out with success through the most difficult problems faced by us. His active interest in this topic and valuable advice was the source of the author's inspiration.

We would like to place on record our deep sense of gratitude to our guides for their **coo**peration and unfailing courtesy to us at every stage.

We sincerely would like to thank all instructors and staffs of the Civil Engineering Department of Sonargaon University (SU), Dhaka, which contributed in various ways to the completion of this thesis.

Finally, we would like to express our deepest gratitude to our entire group member whose support and manual labor contributed in various ways for the completion of this thesis work.

ABSTRACT

Concrete is a construction material that is mostly used across the world. It is a composite material made out of water, cement, fine aggregate (sand) and coarse aggregate (stones). However, the manufacturing process of raw materials used in concrete such as cement and aggregate causes environmental influences (emission of greenhouse gases and dust) and significantly consumes energy and natural resources.

Aggregate normally accounts 70 to 80 % of the entire volume of concrete, while water and cement account 20 to 30 ⁰/0. These percentages affect the mechanical properties of concrete. Replacing any of these materials by industrial waste material can have a positive impact on the environment. Hence, this project has focused on evaluating the opportunity of using one of these waste materials which is the fly ash as a partial replacement material for cement.

Fly ash is generally considered as a waste material that is produced as a by-product of coal combustion process. The physical and chemical properties of fly ash are similar to cement, which allows it to be used in concrete. The primary aim of this research is to determine the feasibility of using fly ash as a replacement of cement in concrete and their effects on the mechanical properties of concrete.

This Paper presents the results of an experimental investigation carried out to evaluate the mechanical properties (workability and compressive strength) of concrete mixtures in which cement was partially replaced with Fly Ash. Cement was replaced with two percentages (5%, 10%) of fly ash by weight. Tests were conducted for properties of fresh concrete (workability), and compressive strength was determined at 7, 14 and 28 days. Test results indicate significant improvement in the strength properties of plain concrete by the inclusion of fly ash as partial replacement of cement and can be effectively used in concrete structures.

TABLE OF CONTENTS

TITLE	PAGE NO.
Title page	
Letter of Transmittal	ii iii
 Acknowledgement -	
-	
- Abstract	vi
-	
-	
List of Tables	xi
List of Figures	xii
Abbreviation List_	- xiii
-	
CHAPTER 1: INTRODUCTION	
1.1 Background	
1.2 Objectives	
1.3 Scope	

1.4 Outline Of The Thesis
1.5 Flow Chat

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction
2.2 Fly Ash
2.2.1 Nature of Fly Ash and its production
2.2.2 Physical and Chemical Properties of fly ash
2.2.3 Effects of fly ash on the environment
2.2.4 How fly ash works with cement in concrete
22.5 Effects of fly Ash on the properties of fresh concrete
225.1 Water demand and Workability 2.2.5.2 Bleeding and Segregation
2.2.5.3 Setting time

2.2.5.5 Curing	10
2.2.6 Effects of fly Ash on the properties of hardened co	oncrete. 11
2.2.6.1 Compressive strength Development.	11
2.2.6.2 Other Mechanical Properties	
2.2.6.3 creep.	12
2.2.7 Effects of fly Ash on the Durability of Concrete	12
2.2.7.1 Permeability	1
2.2.7.2 Drying Shrinkage	13
2.2.7.3 Freeze thaw Resistance	13
2.3 Cement.	14
2.3.1 Nature of Cement and its Production	
2.3.2 Setting and hardening of cement_	
2.3.3 Types of Cement_	1 5

2.3.4 Constituents of Ordinary Portland Coment		1
2.3.4 Constituents of Ordinary Fortiand Cement		6
		1
2.3.5 Environmental Impact of Ordinary Portland Cement.		6
2.4 Comparison Between Fly Ash And Cement		17
2.5 Aggregate		17
		1
2.5.1 Fine Aggregate.	• = =	8
2.5.1.1 Properties of fine aggregate and its function in concrete		18
2.5.1.2 Environmental implication of Fine Aggregate		19
		 1
2.5.2 Coarse Aggregate		1
		 9
2.5.2.1 Physical Properties		20
2522 Environmental implication of Coarse Aggregate		20
2.3.2.2 Environmental implication of Coarse Aggregate.		 20
2.6 Fly Ash in Concrete_		21
2 C 1 Advantages		01
2.0.1 Advantages		 21
	-	

2.6.2 Disadvantages	21
2.6.3 Economic and environmental impacts of using fly ash in concrete	22

CHAPTER 3: METHODOLGY

3.1 Introduction	23
3.2 Properties Of Concrete	23
3.2.1 Fresh Concrete Properties	23
3.2.2 Hardened Concrete Properties	23
3.3 Materials And Mix Proportions	24
- 3.3.1 Materials	24
3.3.2 Mixture Proportions for the Cement Replacement	26
3.3.3 Water Cement Ratio	26
3.4 Mixing Process	26
3.5 Curing	28
3.6 Compressive Strength Test	29
3.6.1 Purpose of the Test	29
3.6.2 Testing Machine	29
3.6.3 Testing Procedure	29

CHAPTER 4: LABORATORY INVESTIGATION

4.1 Introduction	31
4.2 Sieve Analysis	31
4.2.1 Coarse Aggregate (Jaflong)	31
4.2.2 Aggregate Impact Value (Jaflong)	32
4.3 Specific Gravity & Absorption Capacity of Coarse Aggregate (Jaflong)	32
4.4 Specific Gravity & Absorption Capacity (Fine Aggregate)	33
4.4.1 Specific Gravity & Absorption Capacity of Fine Aggegate (Sylhet Sand) -	33

CHAPTER 5: RESULT AND DISCUSSION

5.1 Introduction	35
5.2 Expected Results From The Experiment	35
5.3 Results	35
5.3.1 Compressive Strength	35
5.3.1.1 Compressive strength Results of Cement Replacement	35

CHAPTER 6: CONCLUSIONS

6.1 Introduction	•	39
6.2 Recommendations	. 4	40

REFERENCE

41

LIST OF TABLES

PAGE NO.

TABLE NO. NAME OF THE TABLE

2.1	CEzóc:al of fly Ash
Table 2-2	Physical Properties offly ash (Gamage 2011).
2.3	Chemical Properties of Ordinary Portland Cement
2.4	Physical properties offine aggregate (Sand) and fly ash
Table3.1	Dimensions of the Cylinder
3.2	Concrete Mix Proportions
Table 4.1	Course Aggregate Sieve Analysis
Table 42	Aggregate Impact Value (Jañong)
Table4.3	Specific Gravity and Absorption Capacity of Coarse aggregate (Jaflong)
Table 4.4	Fine Aggregate Sieve Analysis
Table 5.1	Result of 7 Days Compressive Strength
Table 52	Result of 14 Days Compressive Strength
Table 53	Result of 28 Days Compressive Strength

LIST OF FIGURES

FIGURE NO	. NAME OF THE FIGURE	PAGE NO.
Figure 2.1	Coal Fired Povær Station	 5
Figure 2.2	Cement Compounds Hydration	9
Figure 3.1	Fly Ash Powder	 24
Figure 3.2	Fine Aggregate (sand)	 24
Figure 3.3	Cement	 25
Figure 3.4	Coarse Aggregate	 25
Figure 3.5	Cylinder Sample Mixing	 27
Figure 3.6	Cylinder Sample Mixing	 27
Figure 3.7	Pouring of Concrete into the Cylinders	 28
Figure 3.8	Curing of Samples in Water	 28
Figure 3.9	Universal Testing Machine (UTM)	 29
Figure 5.1	Compressive Strength Versus Age	 38
Figure 5.2	Compressive Strength Versus Fly Ash Percentage	 38

ABBREVIATION LIST

1. American Society for Testing and Materials (ASTM)

- 2. Aluminium oxide (A1203)
- 3. Calcium carbonate (CaC03)
- 4. Carbon dioxide (C02)
- 5. Calcium oxide (CaO)
- 6. Calcium hydroxide (CH)

- 7. Calcium silicate hydrate (CSI-I)
- 8. Dicalcium Silicate as (2CaO.Si02)9. Fly Ash (FA)
- 10.High calcium Fly Ash (Class C)
- 11.Iron oxide (Fe203)
- 12. Low calcium Fly Ash (Class F)
- 13.Magnesium oxide (MgO)
- 14. Potassium oxide (K20)
- 15. Silicon dioxide (Si02)
- IS. Sodium oxide (Na20)
- 17- Sulfur Trioxide (S03) III. Tetracalciumalumina-ferrite C4AF (4CaO.A1203.Fe203)
- 19- Aluminate C3A (3CaO.A1203) 20. Tricalcium Silicate C3S (3CaO.Si02)