
-t

EEE *I4oooa

Comparative Study on Space Compaction by Using
Minimal Logic Gate in a Graph Theoretical

Approach

A Dissertation Submitted to The Department of Electrical and Electronics Engineering of

Sonargaon University in Patiala Fulfillment of the Requirements for the Degree of Bachelor

of Science in Engineering.

SONARGAON UNIVERSITY

Submitted To

Md. Fairuz Siddiquee
Lecturer EEE

Sonargaon University

Submitted By

Mohammad Masum Sarker
ID No: EEE 14030031.t7

Md. Shariful Islam
ID No: EEE 1403003077

Md. Ashiqur Rahman
ID No: EEE 1403003074

Department of Electrical & Electronic Engineering
Sonargaon University

Dhaka- 1208, Bangladesh

I

I

I

i-.

F

t
I

l, -i

\

I

I

;

I

I

I
I

t-
ir

l*

Date of Submit: 05.02.2016

ta

I certify that I have read this dissertation and that, in my opinion, it is fully
adequate, in scope and quality as a dissertation for the degree of BSC in Engineering.

Md. Fairuz Siddiquee

Lecturer EEE

Sonargaon University

@q&u

ir
!e
tsi

F

Dedication

I dedicate this dissertation to

My beloved parents

Preface

Despite the fact that new design automation tools have allowed designers to work
on higher abstraction levels, test-related activities are still mainly performed at the lower
levels of abstraction. At the same time, testing is quickly becoming one of the most time
and resource consuming tasks of the electronic system development and production cycle.
Therefore, traditional gate-level methods are not any more practical nowadays and test
activities should be migrated to the higher levels of abstraction as well. It is also very
important that all design tasks can be performed with careful consideration of the overall
testability of the resulting system. The main objective of this thesis work has been to
investigate possibilities to support reasoning about system testability in the early phases
of the design cycle (behavioral and system levelsJ and to provide methods for systematic
design modifications from a stability perspective. Our research is carried out in close
cooperation with both the industry. We would like to mention here the very fruitful
cooperation with the groups at Sonargaon University Research Center. Our work has also
been regularly presented and discussed in The Sonargaon University thesis coordinator.
This cooperation has opened new horizons and produced several results, some of which
are presented in this thesis.

a
a

a

Acknowledgments

? I would like to sincerely thank my supervisor Md. Fairuz Siddiquee for all support
in the work toward this thesis. Md. Fairuz Siddiquee has always given me excellent
guidance and I have learned a lot from him. He has also given me the opportunity and
support to work with problems not directly related to the thesis, but very relevant for
understanding the research organization and administrative processes, Who has always
been an excellent generator of new ideas and enriched our regular meetings with very
useful remarks. The colleagues at IDA have provided a nice working environment. They
have through the past few years grown to be more than colleagues but good friends. I also
thanks to Rajib Baran Roy, Assistant Professor & Department Head of EEE for support and
encouragement as well as the wonderful atmosphere. He give me good guideline &
mentally support for complete my thesis. Many thanks also to Professor Abdur Razzak,
Vice Chancellor and Abdul Kalam, Assistant Professor & Department Head of Business
Administration of Sonargaon University, who is responsible for bringing me to the
wonderful world of science. The continuing cooperation with him for thesis.

Finally I would like to thank my parents, my brother & sister, my nephew and all my
friends. You have always been there, whenever I have needed it

1 Mohammad Masum Sarker

ID No: EEE1403003117
Department of Electrical & Elecronic Engineering
Sonargaon University

Hd- SharifuI Islam

lD No:8EE1403003077
Deparunent of Electrical & Electronic Engineering
Sonargaon University

Md. Ashiqur Rahman

ID No: EEE1403003074
Department of Electrical & Electronic Engineering
Sonargaon University

Abstract

We try to improve space compaction one stage or multistage use logic gate
implementation through graph Theory. We implement Brute Force & Brone Kerbosch
theory at this thesis for improve space compaction. The technological development is
enabling production of increasingly complex electronic systems. All those systems must
be verified and tested to guarantee correct behavior. The established low-level methods
for space compaction are not any more sufficient and more work has to be done at
abstraction levels higher than the logic gate. This thesis reports on one such work that
space compaction techniques. The contribution of this thesis is twofold. First, we
investigate the possibilities of space compaction. We have try to developed space
compaction for this purpose Brute Force & Brone Kerbosch algorithm. The second part of
the thesis concentrates on efficienry & compaction time at space compaction & compeer
at another method. We investigate which method is perfect or sufficient at space
compaction. We have also developed methods for space compaction implementation
graph theory and efficienry of the proposed technique.

This thesis presents a new technique for merging output test vectors and
compares different types of compacfion methods. The proposed technique takes
advantage of some well- known concepts of conventional switching theory, together with
the selection of specific gates for merger of an arbitrary but optimal number of output bit
streams from the circuit under test.

This is a new technique as it is implemented without any modification of the
original circuit. But the maximum compaction is achieved in almost all cases within a
reasonable time span. The proposed technique is illustrated with design details of space
compactors for ISCAS flnternational Symposium on Circuits and Systems) 85
combinational benchmark circuits using simulation programs ATALANTA. The simulation
result confirms the usefulness of the approach for its simplicity, resulting low area
overhead, and full fault coverage for single stuck-line faults, thereby making it suitable in a
VLSI design environment.

a

r_

Contents

Preface.

Acknowledgments.

Absfact....

Chapter l lntroduction

History.......
Motivation

1.L
1.2

L4
15

L1,

L6

a

Chapter 2 Testing

Hierarchical Test Generatio
Decision Diagram Synthesis..
Hierarchical Test Generation Algorithm.
Conformity Test.............

Testing Functional Units...........
A Hybrid BIST Architecture and its Optimization for
SoC Testing,............

Hybrid B IST Architecrure.......
Importance of Testing....--............

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2,8

1,6

24

18
21
23

25
27
30

Chapter 3 Algorithm

3.1 Bron-KerboschAlgorithm.............
3.2 Algorithm 1....................

3.3 Algorithm 2................,...

3.4 Algorithm 3....................

3.5 FaultSimulationand Results....................
3.6 Fault simulation result comparison

32

32
34
36
37
3B
44

i5
,:,:

Chapter 4

4.1, MATLAB Based Cost Modeling for VLSI Testing......... 45
4.2 Economic Cost Model for ATEBASED VLSI Testing... 46
4.3 Cost Modeling Tool with MATLAB Graphical

User Interface,.. 48

45

50

52

List of Figures

Figure 2.1 Hierarchical representation of a digital design 1.7

FigureZ.Z A decision diagram example.... 79
Figure 2.3 The general flow for hierarchical test generation algorithm 22
Figure 2.4 Conformity test............. 23
Figure 2.5 Testing Functional Units24
Figure 2.6 Testing a system-on-chip......... 25
FigareZ.Ta Hardware-based hybrid BIST architecture......... ... 27
Figure 2.7b LFSR emulation............ 29
Figure 3.1 Bron-Kerbosch Algorithm............. 32
Figure 3.5a Circuit of C432 38
Figure 3.5b Compactor Circuit Tfor C43Z 38
Figure 3.5c Compactor circuit 2 for c43?. 39
Figure 3.5d Circuit of C3540 39
Figure 3.5e Compactor Circuit l for C3540 40
Figure 3.5f Compactor Circuit 2 for C3540 40
Figure 4.1 Quality and cost Trade-offs ITRS 20071.......... 45
Figure 4.2 Economic cost model for ATE based VISI Testing.].. 46
Figure 4.3 Tool development of Cost modeling..^............. 48

,

Table 2.8
Table 3.5a
Table 3.5b
Table 3.5c
Table 3.5d
Table 3.5e
Table 3.6a
Table 3.6b
Table 4.3

List of Tables

Testing Result 30
Fault simulation result in ATALANTA without compaction 41,

Fault simulation result in ATALANTA with compaction 47
Fault simulation result in ATALANTA without compaction 42
Fault simulation result in ATALANTA with compactor-circuit 1............. 42
Fault simulation result in ATALANTA with compactor- circuit 2 43
Comparison Table for Circuit: c432.......... 44
Comparison Table for Circuit: c3540........ 44
Devices for cost modeling and parameter specifications 49

-t

10

Chapter 1

Introduction

Design for Test falso known as "Design for Testability" or "DFT") is a name for
design techniques that add certain testability features to a microelectronic hardware
product design. The purpose of manufacturing tests is to validate that the product
hardware contains no defects that could, otherwise, adversely affect the product's correct
functioning.

Tests are applied at several steps in the hardware manufacturing flow and, for
certain products, may also be used for hardware maintenance in the hardware
environment. The tests generally are driven by test programs that execute in Automatic
Test Equipment [ATE) or, in the case of system maintenance, inside the assembled system
itself. In addition to finding and indicating the presence of defects [i.e., the test fails), tests
may be able to log diagnostic information about the nature of the encountered test fails.
The diagnostic information can be used to locate the source of the failure.

In other words, the response of vectors [patterns) from a good circuit is compared
with the response of vectors [using same patterns) from a DUT (device under testJ. If the
response is the same or matches, the circuit is good. Otherwise, the circuit is faulty.

DFT plays an important role in the development of test programs and as an
interface for test application and diagnostics. Automatic test pattern generation, or ATPG,

is much easier if appropriate DFT rules and suggestions have been implemented.

Automatic or Automated Test Equipment [ATE] is any apparatus that performs
tests on a device, lanown as the Device Under Test (DUT) or Unit Under Test (UUTJ, using
automation to quickly perform measurements and evaluate the test results. An ATE can
be a simple computer controlled digital multi-meter, or a complicated system containing
dozens of complex test instruments (real or simulated electronic test equipment] capable
of automatically testing and diagnosing faults in sophisticated elecEonic packaged parts or
on Wafer testing including System-On-Chips and Integrated circuits.

Space compaction of test response provides parallel access to functional output and
reduces testing time and test Data volume. The realization of space-efficient support
hardware for built-in self-testing IBIST) is of great significance in VLSI circuits design.
Testing in its broadest sense means to examine a production and to ensure that it functions
and exhibits the properties and capabilities that it was designed to possess. Main purpose
of testing is to detect malfunctions in the product hardware and to locate their causes so
that they may be eliminated.

A built-in self-test IBIST) or built-in test (BIT) is a mechanism that permits a

machine to test itself. Engineers design BISTs to meet requirements such as:

1. High reliability
2. Lower repair cycle times

t7

Constraints are:
L. Limited technician accessibility
2. Cost of testing during manufacture

The main purpose of BIST is to reduce the complexity, and thereby decrease the
cost and reduce reliant upon external (pattern-programmed) test equipment. BIST reduces

cost in two ways:

1. Reduces test-cycle duration
2. Reduces the complexity of the test/probe setup, by reducing the number of I/O

signals that must be driven /examined under tester control. Both lead to a reduction in
hourly charges for automated test equipment (ATE) service. Space compaction of test
response provides parallel access to functional output and reduces testing time and test
data volume. The realization of space-efficient support hardware for built-in self-testing

IBIST) is of great significance in VLSI circuits design.

A device under test [DUT) is a device that is tested to determine performance and
proficiency. A DUT also may be a component of a bigger module or unit known as a unit
under test (UUT). A DUT is checked for defects to make sure the device is working. The

testing is designed to prevent damaged devices from entering the market, which also may

reduce manufacturing costs.

A DUT is usually tested by automatic or automated test equipment (ATEJ, which
may be used to conduct simple or complex testing, depending on the device tested. ATEs

may include testing performed on software, hardware, electronics, semiconductors or
avionics.

Automatic test equipment (ATEJ is a machine that is designed to perform tests on

different devices referred to as a devices under test [DUT). An ATE uses control systems
and automated information technoloryto rapidly perform tests that measure and evaluate
a DUT.

ATE tests can be both simple and complex depending on the equipment tested. ATE

testing is used in wireless communication and radar as well as electronic component
manufacturing. There is also specialized semiconductor ATE for testing semiconductor
devices.

Automated test equipment is a computer-operated machine used to test devices for
performance and capabilities. A device that is being tested is known as device under test
(Dlffl. ATE can include testing for electronics, hardware, software, semiconductors or
avionics.

There are uncomplicated ATEs such as volt-ohm meters that measure resistance
and voltage in PCs. There are also complex ATE systems that have several test mechanisms
that automatically run high-level electronic diagnostics such as wafer testing for
semiconductor device fabrication or for integrated circuits. Most high-tech ATE systems
use automation to perform the test quickly.

t2

I

The objective of ATE is to quickly confirm whether a DUT works and to find defects.

This testing method saves on manufacturing costs and helps prevent a faulqr device from
entering the market. Because ATE is used in a wide array of DUTs, each testing has a
different procedure. One actuality in all testing is that when the first out-of-tolerance value

is detected, the testing stops and the DUT fails the evaluation.

Very-large-scale integration (VLSI) is the process of creating an integrated circuit
(lC) by combining thousands of transistors into a single chip. VLSI began in the 1'970s

when complex semiconductor and communication technologies were being developed. The

microprocessor is a VLSI device. Before the introduction of VLSI technology most ICs had a

limited set of functions they could perform. An electronic circuit might consist of a CPU,

ROM, RAM and other glue logic. VLSI lets IC designers add all of these into one chip.

Hybrid BIST for sequential circuits. In this thesis we have proposed a hybrid BIST

approach for combinational circuits. A more complex problem is to propose an

architecture and optimization mechanisms for sequential circuits. The difficulty of
developing such architecture and mechanisms is not only due to the complex nature of
sequential circuits, but also related to pseudorandom testability. In case of combinatorial
circuits, pseudorandom patterns have relatively high fault detection capabilities. This is
not valid for sequential circuits and alternative methods for reducing the test data amount
has to be developed. One of the possibilities is to apply pseudorandom patterns only for a
combinatorial section of the design while the rest of the design is tested with deterministic
patterns.

Self-test methods for other fault models. Most of the existing work in the area of
BIST is targeting the classical SSA fault model. At the same time it has been demonstrated
that the SSA fault model can only cover some failure modes in CMOS technology. Thus, the
importance of other fault models flike transition and path delay) is increasing rapidly.
Therefore, it would be very interesting to analyze the quality of hybrid test set in terms of
defect detection capabilities and to develop a methodology to support the detection of
other failures than the stuck-at ones.

Automatic Test Pattern Generation (ATPG) has several purposes:

01. It can generate testpatterns.
02. It can find redundant circuit logic.
03. It can prove one implementation matches another.

13

History

During the mid-1920s, several inventors attempted devices that were intended to
control current in solid-state diodes and convert them into triodes. Success did not come
until after WWII, during which the attempt to improve silicon and germanium crystals for
use as radar detectors led to improvements in fabrication and in the understanding of
quantum mechanical states of carriers in semiconductors. Then scientists who had been
diverted to radar development returned to solid-state device development. With the
invention of transistors at Bell Labs in 1947, the field of electronics shifted from vacuum
tubes to solid-state devices.

With the small transistor at their hands, electrical engineers of the 1950s saw the
possibilities of constructing far more advanced circuits. As the complexity of circuits grew,
problems arose.

One problem was the size of the circuit. A complex circuit, like a computer, was
dependent on speed. If the components of the computer were too large or the wires
interconnecting them too long, the electric signals couldn't travel fast enough through the
circuit, thus making the computer too slow to be effective.

|ack Kilby at Texas Instruments found a solution to this problem in 1958. Kilby's
idea was to make all the components and the chip out of the same block (monolith) of
semiconductor material. Kilby presented his idea to his superiors, and was allowed to
build a test version of his circuit. In September 1958, he had his first integrated circuit
ready. Although the first integrated circuit was crude and had some problems, the idea was
groundbreaking. By making all the parts out of the same block of material and adding the
metal needed to connect them as a layer on top of it, there was no need for discrete
components. No more wires and components had to be assembled manually. The circuits
could be made smaller, and the manufacturing process could be automated. F'rom here, the
idea of integrating all components on a single silicon wafer came into existence, which led
to development in small-scale integration [SSI) in the early 1960s, medium-scale
integration (MSI) in the late 1960s, and then large-scale integration (LSI) as well as VLSI in
the 1970s and 1980s, with tens of thousands of transistors on a single chip flater hundreds
of thousands, then millions, and now billions [1-09)).

1.4

Motivation

Hardware testing is a process to check whether a manufactured integrated circuit is
error-free. As the produced circuits may contain different types of errors or defects that
are very complex, we have to define a model to represent these defects to ease the test
generation and test quality analysis problems. This is usually done at the logic level. Test
patterns are then generated based on a defined fault model and applied to the
manufactured circuitry. It has been proven mathematically that the generation of test
patterns is an NP- complete problem and therefore different heuristics are usually used.
Most of the existing hardware testing techniques work at the abstraction levels where
information about the final implementation architecture is already available. Due to the
growth of systems complexity these established low-level methods are not any more
sufficient and more work has to be done at abstraction levels higher than the classical gate
and register-transfer level (RT{evelJ in order to ensure that the final design is testable and
the time-to-market schedule is followed. More and more frequently designers also
introduce special structures, called design for testability (DFT) structures, during the
design phase of a digital system for improving its testability. Several such approaches have
been standardized and widely accepted. However, all those approaches entail an overhead
in terms of additional silicon area and performance degradation. Therefore it will be highly
beneficial to develop DFT solutions that not only are efficient in terms of testability but
also require minimal amount of overhead Most of the DFT techniques require external test
equipment for test application. BIST technique, on the other hand, implements all test
resources inside the chip. This technique does not suffer from the bandwidth limitations
which exist for external testers and allows to apply at-speed tests. The disadvantage of this
approach is that it cannot guarantee sufficiently high fault coverage and may lead to very
long test sequences. Therefore a hybrid BIST approach that is implemented on-chip and
can guarantee high fault coverage can be very profitable when testing modern systems-on-
chip (SoC).

15

Chapter 2
TESTING

Hier archical T e st G eneration

The main idea of the hierarchical test generation (HTG) technique is to use
information from different abstraction levels while generating tests. One of the main
principles is to use a modular design style, which allows to divide a larger problem into
several smaller problems and to solve them separately. This approach allows generating
test vectors for the lower level modules based on different techniques suitable for the
respective entities. In hierarchical testing two different strategies are known: top- down
and bottom-up. In the bottom-up approach, tests generated at the lower level will be
assembled at the higher abstraction level. The top-do'rrm strategy, introduced in, uses

information,

Generated at the higher level, to derive tests for the lower level. Previously mentioned as

well as more recent approaches have been successfully used for hardware test generation
at the gate, logical and register-transfer [RT] levels. In this thesis, the input to the HTG is a
behavioral description of the design and a technology dependent, gate level library of
functional units. Figure 2.1 shows an example of such a hierarchical representation of a
digital design. It demonstrates a behavioral specification, a fragment of a corresponding
behavioral level decision diagram and a gate level net list of one of the functional units.

L6

if {ftJl > 0}
X:INI + 3i --- .f:1

if {rE: }: 0}
I LLaL,

else
J;-i-a: J ,

L4- 4

.'_?'4-J

Behavioral level DD

l

Y:x-i0; -------- q:4
Y:V*l - - ------- r{-J
our:}r 6 y, -------- q6 t

\q__ I
'{:- --- -rr*-i

Behavioral deseription
Gate level netlist ef a FU

Figure 2.1 Hierarchical representation of a digital design

Our high-level hierarchical test generation approach starts from a behavioral
specification, given in VHDL. At this level the design does not include any details about the
final implementatior! however we assume that a simple finite-state machine [FSM) has
already been introduced and therefore the design is conceptually partitioned into the data
path and control part, For this transformation we are using the CAMAD high-level
synthesis systerq.

DD synthesis from a high-level description language consists of several steps, where
data path and control part of the design will be converted into the DDs separately. In the
following an overview of the DD synthesis process, starting from a VHDL description, will
be given.

17

D ecision Diagram Synthesis

Ih the general case, a DD is a directed, acyclic graph where non- terminal nodes
represent logical conditions, terminal nodes represent operations, while branches hold the
subset of condition values for which the successor node corresponding to the branch will be
chosen. The variables in nonterminal nodes can be either Boolean [describing flags, logical
conditions etc.) or integer [describing instruction words, control fields, etc.) The terminal
nodes are labeled by constants, variables [Boolean or integer) or by expressions for
calculating integer values.

At the behavioral level, for every internal variable and primary output of the design a
data-flow DD will be generated. Such a data- flow DD has so many branches, as many times
the variable appears on the left-hand side of the assignment, Further, an additional DD,
which describes the control-flow, has to be generated. The control- flow DD describes the
succession of statements and branch activation conditions.

Figure 2.2 depicts an example of DD, describing the behavior of a simple function-
For example, variable A will be equal to INL+2, if the system is in the state q=l tFigure
2.2c).lf this state is to be activated, condition IN1> 0
Should be true fFigure Z.?b). The DDs, extracted from a specification, will be used as a
computational model in the HTG environment.

18

1-

E -= -l;- r ::

: "= E - :

= .- ' - '-r

*} Spssl$catio{1
i.C$r,lrflEIliS St*n 'i,!rtl "-'i

Th:e [qffiils$.$,Wv+ DrG

l,q d*n,st*,* th.e s3*te
uss**hl* sn,rl q-is {h*
:m*:irlot-ts stmte,)

{-i,J

t: Th* d,sia-flfiw $E

Figure 2.2 A decision diagram exarnple.

i9

SICStus Prolog representation of Decision Diagrams As described earlie:
behavioral level there exist two types of DDs: control-flow DD and data-flou'Dl-
control-flow DD carries two types of information: state transition information 3.:.*
activation information. The state transition information captures the state transir:::
are given in the FSM corresponding to the specified system" The path a.:"'
information holds conditions associated to state transitions.

For each internal or primary output variable corresponds one data- flo','. ,
certain system state, the value of a variable is determined bythe terminal node .:- :-
graph. In this case, the relationship between the terminal node and the varia': = .

vierved as a functional constraint on the variable at the state.

To generate a test pattern for a fault we have to excite the fault [justifica: -

sensitize the fault effect at the primary outputs [propagationJ. For example :

test the statement that is highlighted in Figure 2.2a, we have to bring the s'

state q=).
i

This can be guaranteed only when q'=0 and lN1 >0

Those requirements can be seen as justification constraints.
effect at primary outputs, we have to distinguish between the
behavior of a variable under test (Variable "A" in our example).

For obs--_
fauir'' :::

This requires, that B +0 [from the statement,4; =B*A)
[from the Statement Bj =IN1*29), otherwise the variable "A"
the fault cannot be detected, Those conditions can be seen as

Parsed as functional constraints at different states
n-iodel is represented as a single Prolog module, Se:
iranslation process.

and conse
will have
propaga:. _

By solving the extracted constraints we will have a test pr-:=
input valuesJ which can excite the fault and propagate the faul: =-
outputs. For solving these constraints we employ a commercial cc:...
and have developed a framework for representing a DD model in :.-.= -

First, we translate the control-flow DD into a set of state trans.-. _ _ -:_ ._': :- _ r:-'.
activation constraints are extracted along the activated path T:.=
: l-F

'tr'- a _ t _

a^

I

t

e

Hierarchical T e st G eneration Alg oritlm

This section presents our high-level hierarchical test generation algorithm- At fu
we introduce fault models used in our approach. Thereafter the corresponding te<r lml
discussed and finally the whole test generation environment is presented.

The test generation task is performed in the following way fFigure 2.3] Tcs ac
generated sequentially for each nonterminal node of the control-flow DD. Syffi ;Iil
activationisperformedandfunctionalconstraintsareextracted.Solvingtheffi
gives us the path activation conditions to reach a particular segment of the speciHh. h
order to test the operations, presented in the terminal nodes of the data-flow IXl,&a
approaches can be used. In our approach we employ a gate level test pattern gffi. h
this way we can incorporate accurate structural information into the higfttd rp
pattern generation environment while keeping the propagation and iustificatin dflI
on a high abstraction level

If the consraint solver Ls not able m find a solutiou a new Est c,ee ry h
generated, if possible. Ihis cyde should be omtiDued until a solution b foud r. fr
occurs.

In the following the test pattern gmeratim atsrfU B drcrrib€d ia s6arf,

27

-9 *l*rt fi.ql r.illilrocessed, E :cde

Ixtract functiofi al and,p*th s*ti',l:at$nrn

cr:tsirmi nits tnr 1,msir{iratlom

{-ierse.rat* s test cmse
iC*nf,a,rnrif.+: test +r g*,{*-l*vel ATP.G}

Extrart funti*r,"lal xnd path a*til,a-tirrrr
cr-:n: strx Li n ts f, c' r' fm r-s [t e ** ct p r*p"t gx$ i* n

5*$r-* ccnstrciilts

72

Conformity T8

For the nonterminal nodes of the control-flow DD, conformity tests lt'ill be ry-@u.
The conformity tests target errors in branch activation. For example, in order tu
nonterminal node IN1 [Figure 2.4), one of the output branches of this node s:rmrmru um

activated. Activation of the output branch means activation of a certain set o; ;rqam
statements. In our example, activation of the branch INl-<0 will activate the brancire tuDtfiE

data-flow DD where e=l (A: --XJ. For observability the values of the variables ce-rrmli@u m
ali the other branches of IN1 have to be distinguished from the value of tte rrmuffi
calculated by the activated branch. In our example, Node IN1 is tested, in the rese rc ![il,]![rq[

if X+y. The path from the root node of the control-flow DD to the node n5: uar ilm rc
activated to ensure the execution of this particular specification segrn,*:r @
conditions generated here should be justified to the primary inputs of the --rcufu.,rulre tfu
process will be repeated for each output branch of the node. In the generatr ,ra*qe m ,mIlll

be n[n-1) tests, for every node, where n is the number of oulput branches"

fi*nte'+I-fr.ar*- E : = -------.''l};'--=.---- t
-- -'\---.t'

\--

Eats-Ilow DD.

F:eL-"4Co=c.:-:. =s

23

;

Synthesis is the translation of a behavioral representation of a :=. ._.

structural one, One of the most important parameters guiding the synthesls ::: -

technology that will be used in the final implementation. After the technc"ti. :

the implementation details of the functional units (FUsJ thatwill be useci ii ::= = -

can be found usually in the technology library. Our hierarchical test gener" - - - :

empioys this structural
Information for generating tests and estimating the testability of the fr:'" -:: . *
rvhen using one or another implementation of the FU from the s'::"= -

completely different libraries. This reveals another advantage l: -- -:
generation algorithm: we can derive information about the tes--:..-"
depending on what target technology it will be implemented in. ',',-. --::. =:-:
different possible implementations (different implementation-= ,-: ::.= ;--=
select the solution that is the best from the testabiliry point t,i".--e'.", -:. i
be used later in the synthesis while performing
Allocation and mapping.

T e sting Functian ol Urn I'es

1:,.: iI

1 ra'l

-],j]lr

'* *r

: -:':T.n

1r: -I i': -

,r'T .l -
.

Tests are generated in cooperation r,,-i::
functional unit test generation is perform:i :

specification as depicted in Figure 2,5, rt-he:= =:-
an adder is given,

if {fHl > !}
x:Ei2--r

_ f -- a
EIJC 1.-: a : \l >:

I "r'i

: ,T

* *:
:

;11 - -'-

r-i.r:11-l-,r
r->E

T:-\.- t 5

](:: *Z
{lfrY:X:li:

Behavioral descnpton trr:$ryrere of a gate l*ve! netlist

Figure 2"5 T'es:1:= :::;

1AL1

A Hybrid BIST Architecture and its Optimizafionro ffi, *n"

SaC fes,, mmmw

To test the individual cores on SoC, the test pattern source and --,:
available together with an appropriate test access mechanism ITAMJ, as c;:.
2.6.We can implement such a test architecture in several different \r,a','s, J "-

approach is to implement both source and sink off-chip and require the:.:
external Automatic Test Equipment [ATE). But, as discussed earlier, the .:,.
SoC is constantly increasing and, thus, the demands for the ATE speec ;:.:
are continuously increasing too. However, the technology used in ATE :s ,
behind the one used for advanced SoCs and, the ATE solution',',-..
unacceptably expensive and inaccurate. Therefore, in order to apply ai-s::
keep the test costs under control, on-chip self-test solutions are becom::-= *
popular.

, 't-r

-'"i.
." 1- t'l

I
I
i

Iesf .{.c.s!
hlechirnisrir

Pe.r:i1:1'rerial

{:alnForeilt
Irtercal1r1ecl

A typical BIST architecture consists of a test pattern generator .: : : E*mm

response analyzer (TRAI and a BIST control unit (BCU), all implemented o:: --:: :rrs alls

approach allows applying at-speed tests and eliminates the need for an ;r.:.--r'Er Tr#rwl

Different BIST approaches have been available for a while and have got'r1-.:: !::rsrffii,sr
especially for memory test. For logic BIST ILBIST) there is still no *: -],;l-' "inuffiEruuk

acceptance. One of the main reasons is the hardware overhead requirei:: -l,:lrflft{IE u

BIST architecture. The BIST approach can also introduce additional dela'"" :- :- * :rlLrr!*
and requires a relatively long test application time. At the same time, BI5 - .r :., ,=-'rl. lEre

only practical solution to perform at-speed test and can be used not onll' ::c: - . - t,l;*-run'=4

test but also for periodic field maintenance tests.

Hybrid BIST Archi rE,;nu,r'-v

A hardware-based hybrid BIST architecture is depicted in Figu:= -
pseudorandom pattern generator (PRPG) and the Multiple Input S,.. .
(MISR) are implemented inside the core under test [CUT). The PRP3 ."':
implemented by using LFSRs or any other structure able to proi-ic; t-i:,,
\/ectors rvith a required degree of randomness, The determin,s:.-' ::, -

recomputed off-line and stored inside the system.

Core test is performed in two consecutive stages, Du:':-.=
pseudorandom test patterns are generated and applied. After a rrr: *: .:
test cycles, additional test is performed with deterministic tesr:r:-:r': j

Each primary input of CUT has a MUX at the input that ie:=:':' *=.

coming from the PRPG or from the memory (Figure 2,7 a' ,

To avoid the hardware overhead causei : " -..

performance degradation due to excessivelr' 1a:g= -. -i. .
can be used where pseudorandom test r3::.r':-: .::.: -

Hon'ever, the cost Calculation and optin-.rz-:.: ': .: :
can be applied to the hardr,r,are-bas:c :s ',' : .-, '

optimization.

In case of a soft','.

test data (LFSR pol','::,::r-.

kept in a R0lt1 l''= .'=.
process and a::
that some for::t

In ie-.

progran-l]-.r: l
pattern gen:
11-nor2n. 1.-t

]S

{lPU fi*re

Figure 2.7b LFSR emulation

The quality of the pseudorandom test is --: :- =:'. ::
the hybrid BIST the best pseudorandom seQ*=:-: .. . -: - -

parts of the system are testable by a pure 3s=-.-:.:-- - :

long test application time to reach a good ia::,: ;:""-=:::: .:
can dramatically reduce the length of :i.= -:,-:,1.
complementing it with deterministic s:0::* t::t r j -.:- :

coverage.

As discussed in li: ::.:::::. :-
the memory require:::::-. 't: : .. - -:
LFSR parametet-s ::= t= :' . : -: - .

n: *

r
I

l,\r
{iore j C*re "i+tr

L'ore t-

?9

Importance

Let, 'N' is the number of transistors in a chip and 'P' is the probability of tha:
transistor is faulty & 'Pf is the probability that the chip is faulty. Then,

Pf= 1- [1- pJN

If P = 10-6

N=106

Then, Pf = 63.20/o

A. Fault Coverage

FC = No faults detected /No faults in fault list

Let a AND gate has two inputs: a, b and one output: c

So, possible 6 stuck-at faults: [a0, a1, b0, b1, c0, c1J

Table 2.8: Testing Rt=u-lt

of Testing

Test Faults detr.r-i

50,00%

66.670/o

{[1,0i i']

30

100.00%

B. Clique

The 'Clique' terminology comes from Luce and Perry (1.949). First Algorithm for
solving the Clique problem is that of Harary and Ross (L957). Tarjan and Trojanowski
(1977), an early work on the worst-case complexity of the Maximum Clique problem.

Maximum Clique: A Clique of the largest possible size in a given graph.

Maximal Clique: A Clique that cannot be extended by including one more adjacentvertex.

In the 1990s, a breakthrough series of papers beginning with Feige (199L) and reported at
the time in major newspapers, showed that it is not even possible to approximate the
problem accurately and efficiently.

31

Chapter 3
Algorithm

Bron- Kerb o s ch Alg orithm

The Algorithm was designed and Published in 1973 by the Dutch scientists Joep
Kerbosch and Coenradd Bron.

Bron-Kerbosch Algorithm is for finding the Maximal Cliques in undirected graph. It
is known to be one of the most efficient algorithms which uses recursive backtracking to
find Cliques is practically proven. The Bron-Kerbosch Algorithm uses the vertex in graph
and its neighbors with few functions to generate some effective results.

,M

Fig 3.1: Bron-Kerbosch Algorithm.

R=X=@, P = (1, 2,3, 4,5, 6)

Choosing the pivot element as 4.

4 in P \ N [v) = (1,2,3,4,5,6J \ [1,2,3,5,6)= 4 in 4 Find's thevalues of Pnew, Rnew
,Snew

Pnew = P fl N [v), Rnew = RU (v), Xnew = X n N [v)

R.nerr, = 4, pnew = 11,2,3, 5, 6), Xnew = 0

Eron-kerbosch [4J, (1,2,3,5,6),A)

tkt,N*sr
I
G*t
]IIF

dm'w

J!J
j'r,l

*r#
H\5"*_*___qbc

/(b
aw

r'!*r
n

32

Bron-kerbosch [[4, 1-J, [Z 3),A)

B ro n-kerb o s ch l(4,1,,2),4,4)

Report (4,L,2) as one of the Maximal Clique

Bron-kerbosch[[4),[1,2 ,3,5,6),4) Bron-kerbosch[[4,3),[1),@J Bron-kerbosch[[4,3,1),A,A)

Report (4,3,1) as one of the other Maximal Clique

Bron-kerbosch([4),(1,2 ,3,5,6),A) Bron-kerbosch[(4,2),(L ,5), A) Bron-kerbosch((4,2,5), @,0)

Report (4,2,5) as another Maximal Clique

Bron-kerbosch [(4), [1, 2, 3, 5, 6), 0J Bron-kerbosch[(4, 6), A,A)

Report (4, 6J as the Maximal Clique

33

Algorithm 7

Step 1J Define the possible maximum number of stages in the space compaction trees at
the circuit under test output.

Step 2J Compute the total number of output lines in the circuit under test. Continue the
following steps unless there is only a single output line [possibly).

Step 3J Find the sets of all maximal compatible classes from the circuit under test for logic
AND, OR and XOR by employing Algorithm B (mentioned laterJ.

Step 4J Select a maximal compatible class MCi based on largest number of output lines,
from the sets of all maximal classes. Select the second largest class during subsequent
iteration, if 1000/o fault coverage is not realized in the preceding iteration from the same
circuit under test,

Step 5) Merge the selected output lines of the MCr using appropriate logic gates AND, 0R,
or XOR.

Step 6) Add a new output line corresponding to the selected merged outputs in MCr.

Step 7) Discard all the output lines already used in MCr.

Step B) Search for another MC class MCrr from the remaining output lines.

Step 9) Merge the selected output lines in MCj using appropriate logic gates.

Step 10) Add a new output line corresponding to the selected merged outputs in MC/.

Step 1L) Discard all the output lines already used in MCj.

Step 12) Repeat step B as long as there are maximal classes in the sets, and enough output
Iines.

Step 13) Calculate all the remaining output lines that do not belong to any of the selected
maximal classes.

Step 14) Merge all the remaining lines with XOR gate.

Step 15) Add a new output line corresponding to the selected merged outputs.

Step 16J Inject stuck-at logic faults into the newly generated circuit under test (original
circuit under test + compactor hardware).

Step 17J Compute fault coverage by applying input test patterns.

3+

Step 18) If the fault coverage is 100%, then replace the old circuit under test with the
new circuit under test, and repeat step 2 for computing the second stage of the compactor,

Step 19) If the fault coverage is less than 100o/o, then merge all the remaining lines with
two-input XOR two output lines at a time.

Step 20J Add a new output line corresponding to the selected merged outputs.

Step 21] Inject stuck-at logic faults into the newly generated circuit under test (original
circuit under test + compactor hardware).

Step 22) Compute fault coverage by applying input test patterns.

Step 23) If the fault coverage is less than 100%, then continue to work on the same circuit
under test and repeat step 4 for selecting a new maximal compatible class MCk.

Step 24) If the fault coverage is 100%, then replace the old circuit under test with the
new circuit under test, and repeat step 2 for computing the second stage and subsequent
stages of the compactor.

35

Algorithm 2

This algorithm implements the well-known Bron-Kerbosch algorithm for maximal
clique finding. Steps are mentioned below:

Step 1) Calculate the total number of vertices in the undirected graph.

Step 2) Find the connected diagonal elements of the graph.

Step 3) Select a candidate point.

Step 4) Merge the selected candidate to a set called comp sub, which is to be extended by a
new point, or shrunk by a point on traveling along a branch ofthe backtracking tree.

Step 5) Generate a new set called candidates, which is the set of all points that will in due
time serve as an extension to the present configuration of comp sub.

Step 6) Create another set called not, which is the set of all points that, at an earlier stage,

already served as an extension of the present configuration of comp sub, and are now
explicitly excluded.

Step 7) Remove all points not connected to the selected candidate, keeping the old sets
intact,

Step B) Call the extension operator to perform on the newly generated sets.

Step 9) Remove the selected candidate from the comp sub, and add it to the old set not
after returning.

36

Algorithm 3

Algorithm 3 is the algorithm to compute and generate all the compatible pairs of the
circuit under test for logic gates AND, OR, XOR.

Step L) Calculate the total number of output lines of the circuit under test.

Step 2) Generate all possible combinations (.41, Aj) of output lines, taken two at a time, and
store all pairs of the output lines @r, A7).

Step 3) Select the first pair from the list of combined output lines (1r, ,4y].

Step 4) Merge the selected pair of output lines [,4], ,47') using logic gates AND, OR, and XOR
respectively, using only one logic gate at a time.

Step 5) Add a new output line to the original circuit under test corresponding to the
outputs (Ai, Aj), one at a time.

Step 6) Discard the output lines (,4r,, fl from the original circuit under test, and generate a
new modified circuit.

Step 7) Inject stuck-at logic faults into the newly generated circuit and apply test patterns.

Step 8) If the fault coverage is equal to 1000/0, then store the output pair [,4], ,47] in the
compatible pairs database of logic AND, OR, and XOR respectively.

Step 9) Delete the pair just selected, from the list of combined output lines (,4r, Afl and,
select the next pair.

Step 10) Repeat step 4 and continue until all pairs are selected.

37

Fault Simulation and Results

A. ISCAS Combinational Benchmark
Circuit C432

Fig 3.5a: Circuit of C432

Fig 3.5b: Compactor Circuit 1, for C432

3B

Fig 3.5c: Compactor circuit 2 for c432

B. ISCAS C ombinational B enchmark
Circuit C3540

M**{tur.1

I #*3
| &{$t},sl

Fig 3.5d: Circuit of C3540

/)
""Bar---'''

-._,L-' "

Fig 3.5e: Compactor Circuit 1 for C3540

-r-rr---rfl-- *-...-,.',---.- r'-;_} 140:8 Il-t-{;+t+:-1-
r Y j:{-l

Fig 3.5f: Compactor Circuit 2 for C3540

4A

Tab 3.5a: Fault simulation result in

*

ATALANTA without compaction:

*
?.0) r

*
* *elcome ta atalanta (version
a

*rtiti stsiuARy or T[sI pATrERil {rillRATro]t RcsuLTs
1. circuit structure

Hame of the circuit : c4l2
Nunber of primary inputs : lS
Nunrber of primary outputs : 7
Number of gates : 160
Level of the circuit : !.I

2- ATIrC Faxara€ters
T€it pattern generation rlode
Limit of random patterns (packets)
eacktrack limit
:nltial rardoa nuairer gr*erator seed
Trst pattern co*paction *cde
Linit of saffling <anpactior
Number af shuffles

Test pattern generaticn resllts
Hun&er of, test pattern: before compartion
tiunber of test patterns after compaction
Fault coverage
*ua6er of collapsed fauJts
Nunrber af identified redundant farlts
t{uraber af aborted faults
Total narder cf backtrackinr:s

Henory used

aPU ti&e
lnitialization
Fault sin$lation
FAX
Total

* [ong S. l]a {ha&vt-edu) *
* Heb: http:/l*ru*-et-vt.edu,/ha i* virqinia Polytechnic lfistitlrte & State Univer"sity r*"'*
trtit*trtttrttrtirt{ttrr{r*rt{i{irn*trtrtttitif {tr*{*i I

ttt** *

:

RFT+DTP(+TC
16
1S
13SS286&r7
R.IVERsE + SHUFtrLE
2I

78
48
99.217 g
524
1
3
3l

1024 xbytes

0.000 sets
0.S0S secs
0-000 secs
0.000 secs

Tab 3.5b: Fault simulation result in ATALANTA with compaction:
'* r- ---*- -r;il;r,.-i; etaGr1#*fuiii"{.inT*i -t**

' O$ng 5. fia {ha0vt.edu} i
r Yeh: http:/lxrnr*.ee.vt.edu/ha t
* virginia polytechnj(Inst'itilte & state llniversity ,
tt
ttittiat*ttttitt*t*ittntt*ii**tia*tr**i*tr!iit ltt

4.

5.

t*tttt sut'tr{ARy oF T[sr pATTrRt{ c[illfi.ATroil REsuLTs
l c'ircuit strurture

Name of the circuit ; c4J2
Humber of primary inputs : 16
Number of primary outputs : 1
ilumber of qates : 164
Level af the cirruit : 20

a*tiri

RPT+DTP6+T€
16
1S
1199289671
REVE*SE + sH$FFLE
1

I

1S24 rbytes

0.S00 srcs
0.000 srcs
0.S0S secs
0-00$ secs

I" ATP{ parameters
Test pattern gene.ation Bodr
Limit o{ rsndom patterns (packets)
sacktrack limit
lnitial random number generator seed
T€st pattern <ompaction mode
Limit of suffling conpaction
Noarber of shuffles

3, Test SattErn {enersticn results
Number of test Fatterns before compaction
Nunber of test patterns after rompaction
Fau lt coverage
Number of collapsed faults
Hu*ber of identified redundant farlts
Number of aborted faults
Total number of backtrarkings

l{rarory used

{Pt} time
Ini tia^l izati<;n
rault simulation
FAI.I
rotal

128

99.240 s
576
1
3
f{

41.

Tab 3.5c: Fault simulation result in ATALANTA without compaction:

It
r {e1rofie to atalanta (version 2,0) t
at
a oo$g s. Ha (ha&vt.edu) ,
i ueb: http://rrmr-ee.vt.edu/ha t
r Virginia Polytertrnic lnstitute & state university r
*"t
tiitritti*ttttritttal*tttnt**lttitt{ttttatttl**ttt**tr*

itI'ti* S{$S#\NY OF T[,ST PAITE*N ffHERATION
i1. circuit structfre
i xaara of the cirruit

Nuu*er of primary inputs
. Nrr#er of primary mtputs

Nusber of qates
Level of the rirtuit

:

:?. lfPc pata,seters
Iest pattern generat'ion mode. timit of rando* patterns (parkets)
Backtrark I init

: fnitial randcm number gererator se€d
: Test ,attern conpa{iion r:ode
i t-imit of suffling tomBaction
: ttlmber of shuffles

13. test pattern generation results
Number of test patterns before r.onpaction
tiumber of test patterns after rompaction
Fault coyerage

: Hgnber of rs1'lapsed faults
i iltnber cf identified redundant faults

t{uder of aborted f aults
rotal *r!#rr of barktrackings

4. Hmry used

J. cP$ titr
Initial'ization
Fauli si*Hilation] FAN: Total

RESULI'S i*riit

.3J{0
50
22
1$S9
47

RPT + OTPS ,} T{
1S
10
119S3188t6
RIWRSE + SiIUFFLE
l
15

?53
151
ss.004 x
1428
1]7
0
10

1024 xbytes

0.000 secs
0.000 secs
0-000 secs
0.000 secs

Tab 3.5d: Fault simulation result in ATALANTA with compactor-circuit 1:

i-------
-----i.----** Hel?olrre];-&tmanilffi i}ion*il0)*

i oong s- }la (haevt.edu)I i ryeb: http://mm.ee.vt.edu/ha
a-

It**irt sultHA1iy oF TEsr pATl:nB GtNt(ATroH R[suLTs rrrr**
11, circuit strrctxre
r l{ame of the circuit : <1540
I xumber cf primary inputs : 50

Nunber of prinary outputs : l
Nurber of gates : 1677

I Level of the rircu-it : 51

i2- ATPG parareters
I Test tattern generatinn ncde

Limit of random patterns (packets)
. sarktra(k I imi r

Initial random number generator seed
Test pattern compartion mode
timit of sufflinq comga(tion
ilumber of shuffles

lJ. Test pattern generation results
Number of test patterns before conpaction :

ilumber of test patterns after compact'ion :, Fau lt coverage :
' Number of collapsed faults ;

r ilunber of identifi*d redundant faults :
r Hurnber of atrorted faults :
: total nunlrer cf backtrarkings :

**
i
i
t
I

RFT+DTP6+Ta
l0
10
1l99l18SZ l
RTVERSE + SI-I-+FLE
?
15

??t

91_ l2J I
34 Z;
281
14

102{ <hytes:4- F{enory used

i5- cpu tinre
i lnitialization
i Fau'It sinulation
i FAltl
i rotal

: O.ffi sers
: S.CS0 sers
: $.C{0 sers
: O.ffi sers

+2

Tab 3.5e: Fault simulation result in ATALANTA with compactor- circuii

* t{elco${ ts atalant* (versian ?.0) t
*t
r Dong S. Ha (ha&vt.edu) '* xeb: http:,/lxrr.ee.vt.edu,lLra i
* virginia rolyterhnic rnstitutf & State ilniversity r
it
*lt***lrtt*trrrtr.tt*r***{itt*tt*rrllttrtrllrlll*lttllt

rr*ir* s$/ir,rAxY 0r TESf PATT€RN
l. tircuit strxcture

ila*e of the circlit
!{unber of primary inputs
Hua$er of primary autpilts
Hunber of gates
tevel of the rirru'it

GEllEpaTr0il R[5uLTs *t]**r

: RPT + OTP6 + TC
:16
;10

q3540
50
I
167S
50

: 0.000 secs
: 0.000 sers
: 0.000 secs
: 0-008 secs

2. ATPG pararfieters
Test pattern generation mode
Li$it of randcrn patterns (parkets)
eacktrark -linit
tnitia"l random number generator :eed :
Test pattefn ccnpactirn node :
Liait of suffling compaction :

liunber of shuffles :

3. Test pattern generation results
l{umber of test pattErns before conpartion
lllmber of test patterns after cc*partion
Fault (overage
t{unrber of rol'lapsed faults
l{umtrer of identified redundant faults
l{umber af aborted faults
Total nusrtrer of backtrarkings

4. ueaury used

5. cpu tine
lni tial i:ation
F*ult sixuJation
rAH
Total

1399319009
REVERSE + SHUTFLE
I
l+

ts5
20&
s4.7S8 S
]4?0
t{3
3E
579

10?4 xbytes

+3

Fault simulation result comp an.son

Tab 3.6a= Comparison Table for Circuit; c432

\t'iilr
Comparrion

01. Circuit Structure:

lt)+

02. ATPG Parametersr
13991E::

03. Test Pattern Generation Result:
1aQ

99.24'-
526

Tab 3.6b: Comparison Table for Circuit: c3540

20

B2

.AJ.t

Name of Test Pattern Generation Result Without
Compaction

Number of Primarv Outout
Number of Gate

Level ofthe Circuit

Initial Random Number Generator S 1399286857

Number of Test Patterns before Com

Number of Test Patterns after Compaction
99.237 0/oFault Coverase

Number of Collaosed Faults
Total Number of Backtrackin

Name of Test Pattern Generation
Result

Without
Compaction

With Compartion

ffi
01. Circuit Structure:

Number of Primarv OutDut 22 I
Number of Gate t669 1677 '-:
Level ofthe Circuit 47 51 f-

02. ATPG Parameters:
lnitial Random Number Generator Speed 1399318836 1,39931,8923 i3::-'-: - -:

03. Test Pattern Generation Resu t:
Number of Test Patterns before
Compaction

253 aaa
JJJ J:]

Number of Test Patterns after Compaction 151 193
Fault Coverase 96.004 0/o

Number of Collapsed Faults 3428 a 1-aJ+LJ -:-
Number of Identified Redundant Faults
Number of Aborted Faults
Total Number of Backtrackine

1,37 ', 783 '_::
n 1l -'-

10 19rl : -.

1ra-

Cfu ultpr,,r"r ,r 4

Figure 4.1: Quality and cost Trade-ofis -l - i

The paper is organized as follows: Sectto:, - :=;
economics of VLSI Testing and cost modeling. Sect-o:r : ::=.=
used for the automatic test equipment for mull"-.-:: :---:-

multi-chip module [MCM). Their tool requrred ;:,-.::;:;::=:3:- s;ch as die test cost and

',','afer yield, which are the parameters dlfilc;r::- ':::-,',' .: t:e eari\- stage of design.
Therefore, their tool may not be practical lo pree-;: : -:--! ::s:;:E cost early on.

MATLAB Based Cost Modeling for VLY fer;m mgp

Focus on cost of the test will result in a better understandin= -' : "

betrveen test methodologies as per ITRS 2007 as shown in figurel. T'": :.
test boosts exponentially with an improvement in defects per million i-D.l
modeling in MATLAB GUI [graphic user interfaceJ is very po\\'ertu. .,
designer's time, Modification of any designed function in MATLAB GL. . : -'

flexibility of MATLAB is used for rapid deployment of the compler Strr" :-:
user.

:l

ECONOMIC COST MODEL FOR ATEBASM
VLfl TESTING

The cost of semiconductor test to the organization has many drivers that are lfrr
cost, floor space cost, Maintenance cost, ATE cost per site etc. The significance of rt*,
drivers varies substantially from one device to another. Test developm-ent costs:uE *,r
important for the products with lower volume. Cost model is structured with Se hch d
cost parameters figure 2.

Figure 4.2: Economic cost model for ATE based vtsl rest*.

The cost model is targeted the reduction of the capital equiP-ffi o6t ard &e test
time' The area overhead due to Design for TestabiUty forn

--ft"-.rtru"n
is not

considered here so silicon overhead cost for DFT is not modc{ed- meremrg -'is model
considers only cost associated with spending time on equipmtadEst engineering Cost
model is used for wafer sorting during testing. one assumptlln is made h-ere is that all
functional tests are done in package test.

L6areo{
Fkorlp*=eo*
I&istenftecmqt
Treiriqe*t

f;set *f zersahsrusl,{TE
fut forrNmrbse5.45E
&k*h*m*ts
&1E wrpersite

Frek:cd
Fr*ksrdcsrt

46

Th* *rs{ is *;l[c*rl*irr] *x:

t, - (, Ctesira!{, Tra*u! ffll Cp
Lf - Lr'rP

#si,x
*

X.#fifo-r,uiu*

ff;r:s,:"#
l\'i

T*ot
C
,.?,,.,

T*tal uapit*i {Er}ipfi}*nt e.*$t *f tlm t*xi c*}l*
$urxfur*f Pr,ilk [ard$
T*atal tinm * rlie xtrends *n *re erlu,ip*r*xt
Totrrl Iimr: *{ a dir $1:rftds on thc ATE
$umbrr*f di*s te,*.l*S i* p.*r:lt[I*].

C.** : Cu*st*nl. {t:x}$is{ it}xl*rtfu$tii}n; utilir*ti*n. [tl't,;ir c*s[,
i}**r *pure1 m:i{iete{ranr.s and tmliniug r:nr,t,

T* r,atetll*l*l $,i. *guuti** is gil,*n at

n, -lrYti/e*Potrrul t"r- i,vr*r,v** 1 ""-.'"'"'"

'\Strrl;re No: Na *ipr*le eardx
Nn*.i . I{atimunl tourhd*uns zutJ

N::;"-n.=;u*i Life tine l,*lutt$ $f tlis*

ilecr space. $rsint*r$n*e a:rS training ctrsf-

To calcnla* I{o *q::ati*n i* given ss

p*'^=llliutlelt....,"2ts I rtr66.+N*1,1 [

'trhe c*rt ilf .&'i, $rrffhr (:irrd$- whic!: il[$st ifu?&,k{#}rr-rsr*,*+" *f the produr't anc

nn*.f,ilrlullr t***ti*.1*wn$ &f,ft{r*r. Th*l ps*uti* ccldfl, the der€loperl ;ixl
fix$i3sl is giwl,:l tx[*n'

{Enten tire r.eq,ui.r*d dnta fr-*,lri use,r" 3-ike
Enten' Frsbs rard c*st;
Enten ft,u$b*n *f d,ev*"res ; p
First oS alL fu,r tlte calrulatl*re trf I'1.r1.*

l!4atlab, c*de i-s
{ffisigna}. * .X;
ffi:s:ite*ms * strld*uhle {a}/str?*:ub1e (b};
l{s ite_rtrs ATE*
s*rtd*r"r,bLe,{c}/ strEd*ub}.e {d} ;
*.f {N,site_mrss Bdslte_ms_ATE}

N,'=ites-l*t5 * ildsi"t*:*rs;
ELse{ N,sit,es'ild5* $tsit*:**s*TE ;)
: *nd)){5irrnt}.xr'}.3t F.Iatab code is {lerre:.6ped to
eaLcuil*te t{r.e tota3. rast f1}

47

COST MODELING TOOL WITH MATLAB GRAPHICAL
USER INTERFACE

Market modeling and Cost prediction/Estimation are new areas in u,hic:-
physical and mathematical researchers is growing due the stochastic n-.:
financial processes. Constraining by this interest it becomes necessar'.' :

comprehensive software environment, which will use the same moi=.
simplification for quantitative analysis. The main advantage for such apprc: ,

provides rapid prototyping, high-quality visualization, and enhanced modei :=.
end users.

GUI design is based on mathematical equations anc
Interface is designed in MATLAB [.fig fileJ and backend ca. :
GUI for each calculation. Development of GUI and its 1i:.
figure 3,

In this, GUI has been created for mathe:".-..
variables are set depending upon the equation lo :=
component is set in the Property Inspector. A \1^-l :.:
by the callbacks of particular push button, An =., =-: : -- :: .:
for final result calculations, which causes the f;:--: -

established between database which is create: .. -' -.

The model will help us evaluate th= :.:.-
balanced scorecard, for the test processes --. :.= - i

nvo different test processes can be et'a-;-.:=: .

process user is required to enter the
;s:imation are shown in the figure - 3

Ea.;Irnd **;r.aurnurg

Crapht:rl tler htmrt',ii $:

rlliL,t l:19:-i::\{
^t

I

I{
[)IL JIt-_ --=-

II -!3r Jau It__tl.rr. l.*rrrr Itl
-U{

-:: -':--:-!',-".;gS in the
,- a -:.: -,','- =:-:Ctif'eneSS Of

::.: -::". ::S: Oi eaCh teSt
:::::--:::S feqUifed fOf

Table 4.3 Devices for cost modeling and parameter specifications

llit r lt nttr [c I' IL,tri}tiln t llir*ti*n
Sr.l-trlp-ht,r rl' id

*i)ilbrin** I):r irt. [-ititirnr rnlun;* lk j t []ix] :it{J(i _.
lJery ir:t: Numla*r *l' llrtic t:atrs I \l :iJ

f tttat,rharn i]*r,it.-; M*.iilmilm si:llrl i:hiri* lri:tutrnrl I1{1k ,.).1) l0t1

{' nit,t.1/O D*sicu: ,\'lnriururn ll(} $itrrtucur! tr*r squn II{I{rI 1fx} +{}t}

p 1*txl l)r. itt; Tot.ri nttnth-'t i,t dctir r ll.rd5 t,.t E aitt' ttr{ lGi)
tlh Ti nt {xr Iltl+PLl-+ }lix0Ll-sis.nnl+ }fuw l rl l] l

C ATI:1] ATI:. Curt rrtrr e lt;inne I k\ 1sft t-\(.1

Lri A [?l; 1.,-'(])r't .i l-' r(']('uli"' l [\ l l"i {:,..t

i] i:tan.rLTE .,{.TE : lr{ ar, i rtttr n u ndre r i.r i .r}lilnncl s 1 llLfil lti{}i} .,}
i ilr:$i-AlF, A'[fi:]\Iaxiu*Lm A-l]: drtit channrt{ tit"ritutn(.! liUt{z l l.-\{] +{}i}

C ihm ATI: Chlnnrrl {,..11 llitl:.J Lltr lS,l I Ki4{Tl l Li-+i.).J .., - i

',J nr*hrr Iir,:1r'r. (,rst lL\t 15fi _rii)

I litdir:i Prr-rltr. lndcr iirn' Isl
c i::iLril;iI Trsl .LrI1 h*r \ta fn \l: lS {i.il1 ft.t.):

\'(!lrl'lN \TPC {i,1 ,13r,1 i,rtrilt,,' f .'r r:ta lhit.l +$t) +1)i)

P r{rl \ Lr:ti\' r ut,,1tlirrri \i::n.rl : (r

I ma:.Fxtlxclr;i Pr,:L*;ui \l:tintunt lrrLlurnlr [\'lHl l-i(] lrt.i
F_mitr.ill*i:.'rrv.j I'ri't ::i'i \l:rin:uut ilumhr *i iL'rtltlilts raul I1)r.]] . , {

{ nn.thi:iuri Pi,.>-' :i':-i. C.1st ii\ t$ d{}

It:':rirtt*nii':i,,r:.::t. Ir:-,-''iv::iiid \ltr.in:rintnlniltruil;3q!1$r-:'*r':sll;l r,5G I -\t]

R_t{-rlliril Trrl 7ir:i l':r l
irt 5i)

+9

Conclusions

This paper presents a new technique for solving space compaction :--
circuit under test [CUT). The technique utilizes Brone Karbosch Algorithm cor... -:
Karbosch Aigorithm is well for space compaction but it's some limitation fr: -
space compaction. We optimized get batter result at space compaction *-.

Karbosch & Brute Force Algorithm. We think space compaction is not Iittle r,,'c,:.

deep rvork, so need to more work at space compaction. This is an efficient tec:,.. -
rs achieved without any prior modification of the original circuit IMUT -:]

modification for testing is done in software mode, whereas maximal compaciic:. .

in most cases in reasonable time utilizing some simple heuristics. The -.:

illustrated with details of design of space compactors for ISCAS B5 combr:,: .

ATALANTA simulation programs, confirms the usefulness of the suggested .-::
simplicity, resulting lorr,. area overhead, and full fault coverage IFCJ for si:=.= ,

faults, making rt surtabie in a VLSI design environment as BIST support harci',', .. .
be fair to mention here that the test vectors used for detecting single stuc.;- .

digital BIST these day,s, rrrespective of whether the circuits are combrnatio:r:.. -

sequential are either deterministic, minimal or non- minimal, complete, or s.:r-:
but not necessarily complete, or pseudorandom. If minimal comple:- :=..
available for ISCAS 85 circuits, this is obviously would be the best cho.c= : ,.
circuit for complete FC using minimal time and resources.

0n the other hand, programs such as ATALANTA as used in
reduced test sets that detect most single stuck-line faults for ISCAS B:
very good fault coverage, not necessarily 100o/o, for most of the iSC,.,S :=
We found 95o/o average fault coverage & minimum error at
limitation at propose Algorithm, those are not sufficient at ali
types of test vectors are absolutely compatible with the
research.

We found at compeer of circuit c432 without & r',

patterns before compaction, without compaction is 78 & -.'

of test patterns after compaction, without compaction ls =:
coverage with compaction 99.24o/o. Also we found a: --::r-
with compaction, number of test patterns before co:r: : ::
with compaction is circuit-1: 333 & circuit-l :::
compaction, without compaction is 151 & rvith .::-.:i
208. Fault coverage with compaction 94,1' l' - :-

theoretical framework, although was simula.i;; -: :

faults, is amenable to modification to take c,i:= -. :'-.
programs are available to simulate multipl: s:*--: l
extremely difficult to analyze in vier,r, of their-
:-: extremely reliable not to exhibit simultar:,: -.s :..-.:.:
:.: rccasions where these faults need to be :::.s.:=. =-",: JLCaSlUIlS WIIeI'e LIleSe IaUILS lleeU L(J Llc .- l-:--:.:-" --1

-. .: :he case of most other studres Beside,. '.',': :, ,-,- - :

space
spa c.
app:

:-e faults are
::rn dav circuits
:s although there
'ork, we did not,

:::::.^-:s such as stuck-open
:-. short faults, bridging faults inter::--.::=:.: -.. ..-:. ::::.s.:ti: faults in our analysis,

the last two types being very difficult to investigate theoretically, requl:-,-: ,lL-r..--::rrb i'
continuous Markov modeling. With advances in computational resourc:s : - :,::'TTt 'l:lr ,

heuristic space compaction algorithm might be improved upon for be::=: ==:*'r,- rl

respect of time and storage.

Referenres

S,R. Das, tBuilt-in self-testing of VLSI circuits', IEEE Potentials, 10,199'

Saryendra Biswas, Sunil R. Das, Emil M. Petriu; Space Compoctc. -
Circuits Based on Graph Theoretic Concepts; IEEE TR{);S -
INSTRUMENTATION AND MEASUREMENT, VOL, 55, NO, 4, AUGUS: ..

and methodolog;,' -1

:" .,

[U]

Das, S.R. , Hossain, A. , Biswas, S. , Petriu, E.M,; Aliasing-free c:*-: - -

Circuits, Devices & Systems, IET [Volume'.Z,lssue: 1)Page[s]:,:: - -*:
2008.

Das, S.R. , Hossain, A. , Biswas, S. , Petriu, E.M.; Aliasing-fre. :_ -: "

Circuits, Devices & Systems, IET (Volume:Z,Issue: l JPage-!- -:: :
2008.

Biswas, S.N.; Das, S.R, ; Petriu, E.M.

system-on-chip test - An overvlew
Communication, 2009. CODEC 2009.

j Hossain, A; Hybri:

mdil r ri' tJ *

+ l-.4mdF -h,

Biswas, S.; Das, S.R.; Hossain, A.; VLSI Circuit Test ',-::: " - -

lnstrumentation and Measurement Technology f::.:=-;-
IMTC 2007, IEEE; Page[s):1 ! 6; L-3 May 2007.

Siddiquee, M.F. ; Hasan, M.M. ; "Space Compacito: :::
VLSI Test Circuit Design by Uniquell, D:'" =.::=:
Theoretical Approach"; ICEEICT, 2014.

M. Abramovici, M. A. Breuer, A. D. Friedm,- r-.1 rfli Ln iriT .:

Design," IEEE Press, L990.

516,7978.

"J.il:

r C. Angelbro, "P-Bist Test Methoc f : : :
7997.

P. H. Bardell, W. H. It,lcAn::_, j
Techniques," John Wi1e1' ani 5::_ -

:

B. Beizer, "Softivare Tes:::: .:-'--
1990,

-- ----
^D- =.=-- :l;11))

M. A. Breuer, A. D. Friedman, "Diagnosis and Reliable Design of Digita.
Computer Science Press, 1976.

F" Brglez, H. Fujiwara, "A Neutral Netlist of 10 Combinational Benchnt::
and a Target Translator in Fortran," IEEE Int. Symp. on Circuits and 55,51.,-.'-

698, June 1985.

\1. Chatterjee, D. K. Pradhan, "A novel pattern generator for Nea:-:=-'
co\rerage," VLSI Test Symposium, pp. 477-425, 1,995.

[R, A. DeMillo, R. f. Lipton, F. G. Sayward, "Hints on Test Data Se]ecti:: *:
Practical Programmer," IEEE Computer, Vol.11, No.4, April 1978.

E. B. Eichelberg, E. Lidbloom, "Random Pattern Coverage E:.:., -,. *
Diagnosis for LSSD Logic Self-Test," IBM Journal of Research anti - . . :

27 , No.3, pp.265-272, May 1983.

R. D. Eldred, "Test Routines Based on Symbolic Logic Systenr= '- ,

Vol. 6, No, 1, pp. 33-36, 1959.

P.EIes,K.Kuchcinski,Z.Peng,M,Minea,,,Compiling\-:-.
Synthesis Design Representation," EURO- DAC,pp. 604-609 - - - -

Behaviorally Sequential Models," Design, Automation a:-; ,

2001), pp. 403-41 0, 200 1.

F. Glover and M. Laguna. "Modern Heuristic Tech:-, -
Problems", Blackwell Scientic Publishing, pp.70- 14L, 199:

A. Grochowski, D. Bhattacharya, T, R. Viswanathan, K '_.

Testing for Quality Assurance in Manufacturing: Histol-., --
Trends," IEEE Trans. on Circuits and Systems - 1| Vo] *- lr

P. Hansen. The steepest ascent mildest desce:.: .-tr-
programming. Congress on Numerical Methods .: ,. -"

1986.

\V. E. Howden, "Weak Mutation Testing a:i --:::,=:::=ss ,:; Test Sets, IEEE
Transactions on Software Engineering," \rol. S:-S l;- - -*.','^982,

0 IJ, Ibarra, S. Sahni, "Polynomially Conip,ete Fauit Detection Problems," IEEE
T:":sactions on Computers , Vol. C-24, No 3 pp.242-249, March 1975.

.-:: ,<:ardard VHDL Language Reference Manual," ANSI/IEEE Std L076-L993,
- i , , ' -' IEEE Std 1076-1987),lune 6, 1,994

- i=::= R. L1bar "Test Cost Minimization for Hybrid BIST," IEEE Int. Symp
.' - " ., : l:l:rance in VLSI Systems (DFT€),pp.283-291. 2000.

53

J, Khare, \r,-. 11atr]-, N. Tiday, "Fault characterization of stancarG r=-.
inductive :ontamination analysis ICAJ," 14th VLSI lesf $',mpas::.1:
1996.

S, Fui:.ratrick, C. D. Gelatt, M. P. Vecchi, "Optimization by Simulatcc.:r.r,::
Scie::c; ',,-o1.220, No. 4598, pp.67L-680, 1983.

E, ionemann, |. Mucha, G. Zwiehoff, "Built-ln Test for Complex Digita. --:=
::rcuits", IEEE]. Solid-State Circuits, Vol. SC-15, No. 3, pp. 315-319, Jun: -:: -

E. J. Marinissen, Y. Zorian, "Challenges in Testing Core-Based System .*s
Communications Magazine, pp. 104-109, June L999.

K. Marriott, P. J. Stuckey, Programming with Constraints: Introduction, \iil
1998.

P. Michel, U. Lauther, P. Duz5,,"The
Kluwer Academic Publishers, 1992

Sy-nthesis Approach To Digital Systen: Desigr:

B. T, Murray, I, P. Ha1,es, "Hierarci-rical Test Generation Using Precompilec I
Modules," International Test Conference , pp.221,-229, 1988,

f. Rai(R. Ubar. "Fast Test Pallern Generation for Sequential Clrcu.
Diagram Representations." Journal of Electronic Testing: Thecry

AETTA), vol. 16, no. 3, pp. 213-226,lune, 2000.

f. P. Shen, W. Maly, F. l. Ferguson, "lnductive Fault Analysis r,:

Circuits," IEEE Design and Test of Computers, Vol. 2, No. 6, pp.
1985.

M, Sugihara, H. Date, H. Yasuura, "Analysis and Minimization of Test Tin: i:: a

Combined BIST and External Test Approach," Design, Automation & Test in Europe
Conference (DATE 2000),pp. L34-740, March 2000.

Y. Sun, "Automatic Behavioral Test Generation By Using a Constraint Solrrer'
Thesis, LiTH -lDA- Ex- 02 / 13, Linkciping U niv ersity, 200 1,.

N. A. Touba, E. |. McCluskey, "synthesis of mapping logic for general.:; ::'.- ,'
pseudo-random patterns for BIST," IEEE Int. Test Conference (!ll. -:
1995.

N. Zacharia, J. Rajski, J.Tyzer, "Decompressron o: T::: l,:'
Seed LFSRs ," 13th VLSI Test S),mpositntt. pp -1l c-+: r '- . -

\'?^-r-- tr I \l^-i,rlSS.- _i l=,. T=.:.*_:'---::_.-_ .-:r. LUi-i.r,L .j " ridrr
i

-

t

I

I

I

I

t

