
SMART WIRELESS GANTRY

CRANE SYSTEM

A THESIS AND PROJECT

BY

MD. SABBIR HOSSAIN DURLAB

MD. TALHA BAHADUR

MD. SALIM REZA

MD TARIK AZIZ

DEPARTMENT OF MECHANICAL ENGINEERING

SONARGAON UNIVERSITY

FEBRUARY 2020

SMART WIRELESS GANTRY

CRANE SYSTEM

A THESIS AND PROJECT

BY

 MD. SABBIR HOSSAIN DURLAB MD TALHA BAHADUR
 Student ID: BME 1602009194 Student ID: BME 1602009090

 MD SALIM REZA MD TARIK AZIZ
 Student ID: BME 1602009196 Student ID: BME 1503007250

Supervisor: Arup Kumar Haldar

Lecturer

Submitted to the

DEPARTMENT OF MECHANICAL ENGINEERING

SONARGAON UNIVERSITY
In partial fulfillment of the requirements for the award of the degree

of

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

FEBRUARY 2020

SMART WIRELESS GANTRY

CRANE SYSTEM

A Thesis and Project

 By

MD. SABBIR HOSSAIN DURLAB

MD. TALHA BAHADUR

MD. SALIM REZA

MD TARIK AZIZ

 ...

 Supervisor

 Arup Kumar Haldar

DEPARTMENT OF MECHANICAL ENGINEERING

SONARGAON UNIVERSITY

FEBRUARY 2020

I

TABLE OF CONTENTS
TABLE OF CONTENTS I

LIST OF FIGURES III

ACKNOWLEDGEMENT V

ABSTRACT VI

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Crane Control Approaches 4

1.3 Friction Compensation 7

1.4 Objectives 9

CHAPTER 2 METHODOLOGY 10

2.1 Introduction 10

2.2 Block Diagram 10

2.3 Circuit Diagram 11

2.4 Working procedure 12

CHAPTER 3 HARDWARE AND COMPONENT DESCRIPTION 13

3.1 Introduction 13

3.2 Arduino NANO 13

3.2.1 Microcontroller: ATMEGA328P 15

3.2.2 Features 17

3.2.3 Architecture & Pin out 19

3.3 Stepper Motor 20

3.3.1 Fundamentals of operation 21

3.3.2 Types 22

3.3.3 Two-phase stepper motors 23

3.3.3.1 Unipolar motors 23

3.3.3.2 Bipolar motor 24

3.4 Stepper Motor Controller 26

3.4.1 A4988 Motor Driver Pin out 27

II

3.4.2 Power Connection Pins 27

3.4.3 Micro step Selection Pins 28

3.4.4 Control Input Pins 29

3.4.5 Pins For Controlling Power States 29

3.4.6 Output Pins 30

3.4.7 Cooling System – Heatsink 31

3.4.8 Current limiting 31

3.4.9 Wiring A4988 stepper motor driver with Arduino UNO 33

3.5 Bluetooth Module 34

3.5.1 Pin configuration 35

3.5.2 HC-06 Features and Electrical characteristics 36

3.5.3 HC-06 Bluetooth Module Advantages 36

3.5.4 How to use HC-06 Bluetooth Module 37

3.5.5 Applications 38

3.6 Leads Screw 39

3.7 Coupling 39

3.7.1 Usage 40

3.8 Pillow Block Mounted Bearing 40

3.9 Angle bracket 42

CHAPTER 4 DISCUSSION AND RESULT 43

4.1 Introduction 43

4.2 Discussion 43

4.3 Result 43

Chapter 5 CONCLUSION 44

5.1 Conclusion 44

5.2 Future Scope 44

REFERENCES 45

APPENDIX 46

Code: 46

III

LIST OF FIGURES

Figure 1.1: Gantry Crane 2

Figure 1.2: Boom crane 3

Figure 1.3: Tower crane 3

Figure 2.1: Block Diagram 10

Figure 2.2: Circuit diagram of Wireless Control Crane system 11

Figure 3.1: Arduino NANO 13

Figure 3.2: Arduino NANO pins 14

Figure 3.3: Arduino NANO pin out 15

Figure 3.4: ATMEGA328P pin out 19

Figure 3.5: Stepper motor 20

Figure 3.6: Stepper motor model 20

Figure 3.7: Stepper Motor inside 21

Figure 3.8: Bipolar Stepper Motor 21

Figure 3.9: Unipolar stepper motor coils 24

Figure 3.10: Unipolar Motor 24

Figure 3.11: Bipolar Stepper Motor 25

Figure 3.12: Stepper motor driver top view 26

Figure 3.13: Stepper motor driver pin side 26

Figure 3.14: A4988 Stepper Motor Driver Chip 27

Figure 3.15: A4988 driver module pin out 27

Figure 3.16: A4988 driver power pins 28

Figure 3.17: Micro step selection pins 28

Figure 3.18: A4988 driver Control input pin 29

Figure 3.19: A4988 Power States Control pins 30

Figure 3.20: A4988 driver Output pins 30

Figure 3.21: Heat sink for A4988 driver 31

Figure 3.22: Current limiting potentiometer 31

IV

Figure 3.23: Current Adjustment method 1 32

Figure 3.24: Current Adjustment method 2 33

Figure 3.25: Wiring method of the driver 34

Figure 3.26: Bluetooth module top 34

Figure 3.27: Bluetooth module back 35

Figure 3.28: Connection diagram of Bluetooth module 37

Figure 3.29: Leads Screw 39

Figure 3.30: Coupler 40

Figure 3.31: Pillow block mounted bearing 41

Figure 3.32: L shape angle bracket 42

Figure 3.33: L shape angle installed with motor 42

V

ACKNOWLEDGEMENT

At first, we want to express gratefulness and humbleness to Almighty Allah for His

immense blessing upon us for the successfulness completion of this thesis work.

We would like to express our sincere gratitude to our supervisor, Arup Kumar Haldar,

Lecturer, Department of Mechanical Engineering, Sonargaon University for his valuable

suggestions, guidance and constant encouragement during pursuit of this work.

We express our deep sense of gratitude and thanks to Professor Md. Mostofa Hossain,

Head, Department of Mechanical Engineering, Sonargaon University for his motivation

and kind collaboration.

We also would like to express gratitude to Prof. Dr. Md. Abul Bashar , Vice-Chancellor of

Sonargaon University for his support in every aspect of our academic career especially

for our Mechanical Workshop.

 Finally, we would like to express our sincere gratitude to our family who have given

support to our study and prayed for our life.

VI

ABSTRACT

 The main objective of this work is to design robust, fast, and practical controllers for

gantry crane. The controllers are designed to transfer the load from point to point as

fast as possible and, at the same time, the load swing is kept small during the transfer

by automatic smart control system and completely vanishes at the load destination.

Moreover, variations of the system parameters, such as the cable length and the load

weight, are also included. Practical considerations, such as the control action power,

and the maximum acceleration and velocity, are taken into account. In addition, friction

effects are included in the design using a friction-compensation technique.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction
 Cranes are widely used to transport heavy loads and hazardous materials in

shipyards, factories, nuclear installations, and high-building construction. They

can be classified into two categories based on their configurations: gantry cranes

and rotary cranes.

Gantry cranes are commonly used in factories, Figure 1.1. This type of

cranes in- corporates a trolley, which translates in a horizontal plane. The payload

is attached to the trolley by a cable, whose length can be varied by a hoisting

mechanism. The load with the cable is treated as a one-dimensional pendulum

with one-degree-of-freedom sway. There is another version of these cranes,

which can move also horizontally but in two perpendicular directions. The

analysis is almost the same for all of them because the two-direction motions

could be divided into two uncoupled one-direction motions.

Rotary cranes can be divided into two types: boom cranes which are

commonly used in shipyards, and tower cranes which are used in construction,

Figure 1.2. In these cranes, the load-line attachment point undergoes rotation.

Another degree of freedom may exist for this point. For boom cranes, this point

moves vertically, whereas it moves horizontally in tower cranes. Beside these

motions, the cable can be lowered or raised. The cable and the load are treated

as a spherical pendulum with two-degree-of-freedom sway.

2

Figure 1.1: Gantry Crane

In this work, we design our controllers based on a linearized model of

tower cranes. Hence, the nonlinearities, such as Coulomb friction, are not

included. Unfortunately, when the designed controllers were validated on a

tower-crane model, we found that the friction is very high. This friction results

in high steady-state error for position control even without swing control. If the

swing control is included, the response is completely unacceptable. Therefore,

controllers designed based on linear models are not applicable to real systems

unless the friction is compensated for. This can be done by estimating the friction,

and then applying an opposite control action to cancel it, which is known as

friction compensation, Figure 1.3. To estimate the friction force, we assume a

mathematical model, and then we estimate the model coefficients using an off-

line identification technique, such as the method of least squares (LS). First, the

process of identification is applied to a theoretical model of a DC motor with

known friction coefficients. From this example, some guidelines and rules are

deduced for the choice of the LS parameters. Then, the friction coefficients of the

tower-crane model are estimated and validated.

3

Figure 1.2: Boom crane

Figure 1.3: Tower crane

.

4

1.2 Crane Control Approaches

Cranes are used to move a load from point to point in the minimum time such that

the load reaches its destination without swinging. Usually a skillful operator is

responsible for this task. During the operation, the load is free to swing in a

pendulum-like motion. If the swing exceeds a proper limit, it must be damped or

the operation must be stopped until the swing dies out. Either option consumes

time, which reduces the facility availability. These problems have motivated many

researchers to develop control algorithms to automate crane operations. However,

most of the existing schemes are not suitable for practical implementation.

Therefore, most industrial cranes are not automated and still depend on operators,

who sometimes fail to compensate for the swing. This failure may subject the load

and the environment to danger. Another difficulty of crane automation is the nature

of the crane environment, which is often unstructured in shipyards and factory

floors. The control algorithm should be able to cope with these conditions. Abdel-

Rahman etal. (2002) presented a detailed survey of crane control. In the following,

we concentrate on reviewing the general approaches used in this field.

The operation of cranes can be divided into five steps: gripping, lifting, moving the

load from point to point, lowering, and ungripping. A full automation of these

processes is possible, and some research has been directed towards that task (Vaha

et al., 1988). Moving the load from point to point is the most time consuming task

in the process and requires a skillful operator to accomplish it. Suitable methods to

facilitate moving loads without inducing large swings are the focus of much current

research. We can divide crane automation into two approaches. In the first

approach, the operator is kept in the loop and the dynamics of the load are modified

to make his job easier. One way is to add damping by feeding back the load swing

angle and its rate or by feeding back a delayed version of the swing angle (Henry

et al., 2001; Masoud et al., 2002). This feedback adds an extra trajectory to that

generated by the operator. A second way is to avoid exciting the load near its natural

frequency by adding a filter to remove this frequency from the input (Robinett et

al., 1999). This introduces time delay between the operator action and the input to

the crane. This delay may confuse the operator. A third way is to add a mechanical

5

absorber to the structure of the crane (Balachandran et al., 1999). Implementing this

method requires a considerable amount of power, which makes it impractical.

In the second approach, the operator is removed from the loop and the operation is

completely automated. This can be done using various techniques. The first

technique is based on generating trajectories to transfer the load to its destination

with minimum swing. These trajectories are obtained by either input shaping or

optimal control techniques. The second technique is based on the feedback of the

position and the swing angle. The third technique is based on dividing the controller

design problem into two parts: an anti-swing controller and a tracking controller.

Each one is designed separately and then combined to ensure the performance and

stability of the overall system.

Since the load swing is affected by the acceleration of the motion, many

researchers have concentrated on generating trajectories, which deliver the load

in the shortest possible time and at the same time minimize the swing. These

trajectories are obtained generally by using optimization techniques. The

objective function can be either the transfer time (Manson, 1982), or the control

action (Karihaloo and Parbery, 1982), or the swing angle (Sakaw and Shindo,

1981). Another important method of generating trajectories is input shaping,

which consists of a sequence of acceleration and deceleration pulses. These

sequences are generated such that there is no residual swing at the end of the

transfer operation (Karnopp et al., 1992; Teo et al., 1998; Singhose et al., 1997).

The resulting controller is open-loop, which makes it sensitive to external

disturbances and to parameter variations. In addition, the required control action

is bang-bang, which is discontinuous. Moreover, it usually requires a zero-

swing angle at the beginning of the process, which cannot be realized practically.

To avoid the open-loop disadvantages, many researches (Beeston, 1983; Ohnishi

et al., 1981) have investigated optimal control through feedback. They found out

that the optimal control performs poorly when implemented in a closed-loop

form. The poor performance is attributed to limit cycles resulting from the

oscillation of the control action around the switching surfaces. Zinober (1979)

avoided the limit cycles by rotating the switching surfaces. This approach can be

considered as sub-optimal time control. However, the stability of the system has

6

not been proven. Moreover, the control algorithm is too complex to be

implemented practically.

Feedback control is well-known to be less sensitive to disturbances and parameter

variations. Hence, it is an attractive method for crane control design. Ridout

(1989a) developed a controller, which feeds back the trolley position and speed

and the load swing angle. The feedback gains are calculated by trial and error

based on the root-locus technique. Later, he improved his controller by changing

the trolley velocity gain according to the error signal (Ridout, 1989b). Through

this approach, the system damping can be changed during transfer of the load.

Initially, damping is reduced to increase the velocity, and then it is increased

gradually. Consequently, a faster transfer time is achieved. However, the nominal

feedback gains are obtained by trial and error. This makes the process

cumbersome for a wide range of operating conditions. Salminen et al. (1990)

employed feedback control with adaptive gains, which are calculated based on

the pole-placement technique. Since the gains are fixed during the transfer

operation, his control algorithm can be best described as gain scheduling rather

than adaptation. Hazlerigg (1972) developed a compensator with its zeros

designed to cancel the dynamics of the pendulum. This controller was tested on

a physical crane model. It produced good results except that the system was under

damped. Therefore, the system response was oscillatory, which implies a longer

transfer time. Hurteau and Desantis (1983) developed a linear feedback

controller using full-state feedback. The controller gains are tuned according to

the cable length. However, if the cable length changes in an unqualified way,

degradation of the system performance occurs. In addition, the tuning algorithm

was not tested experimentally.

As mentioned before, the objective of the crane control is to move the load from

point to point and at the same time minimize the load swing. Usually, the controller

is designed to achieve these two tasks simultaneously, as in the aforementioned

controllers. However, in another approach used extensively, the two tasks are

treated separately by designing two feedback controllers. The first task is an anti-

swing controller. It controls the swing damping by a proper feedback of the swing

angle and its rate. The second task is a tracking controller designed to make the

7

trolley follow a reference trajectory. The trolley position and velocity are used for

tracking feedback. The position trajectory is generally based on the classical

velocity pattern, which is obtained from open-loop optimal control or input shaping

techniques. The tracking controller can be either a classical Proportional-Derivative

(PD) controller (Henry, 1999; Masoud 2000) or a Fuzzy Logic Controller (FLC)

(Yang et al., 1996; Nalley and Trabia, 1994; Lee et al., 1997; Itho et al., 1994; Al-

Moussa, 2000). Similarly, the anti-swing controller is designed by different

methods. Henry (1999) and Masoud (2002) used delayed-position feedback,

whereas Nalley and Trabia (1994), Yang et al. (1996), and Al-Moussa (2000) used

FLC. Separation of the control tasks, anti-swing and tracking, enables the designer

to handle different trajectories according to the work environment. Generally, the

cable length is considered in the design of the anti-swing controller. However, the

effect of the load mass is neglected in the design of the tracking controller. The

system response is slow compared with that of optimal control or feedback control.

Raising the load (hoisting) during the transfer is needed only to avoid

obstacles. This motion is slow, and hence variations in the cable length can be

considered as a disturbance to the system. Then, the effect of variations in the

cable length is investigated through simulation to make sure that the performance

does not deteriorate. However, there are few studies that include hoisting in the

design of controllers (e.g., Auernig and Troger, 1987).

The effect of the load weight on the dynamics is usually ignored. However, Lee

(1998) and Omar and Nayfeh (2001) consider it in the design of controllers for

gantry and tower cranes. From these studies, we find that, for very heavy loads

compared to the trolley weight, the system performance deteriorates if the load

weight is not included in the controller design.

1.3 Friction Compensation
Friction in mechanical systems has nonsymmetric characteristics. It depends on the

direction of the motion as well as the position (Canudas, 1988). There are several

methods to overcome friction effects. The first uses high-feedback-gain controllers,

which may reduce the effect of the friction nonlinearities. However, this approach

has severe limitations because the nonlinearities dominate any compensation for

small errors. Limit cycles may appear as a consequence of the dynamic

8

interaction between the friction forces and the controller, especially when the

controller contains integral terms. The second uses high-frequency bias signal

injection. Although it may alleviate friction effects, it may also excite high-

frequency harmonics in the system. The third uses friction compensation, which

aims to remove the effect of friction completely.

The third method has an advantage over the other methods because the system

becomes linear after compensation. So, control algorithms based on the linear

model can be applied directly. The compensation is done by estimating the friction

of the system, and then applying an opposite control action to cancel it. The

compensation can be done on-line to track the friction variations, which may

occur due to changes in the environment and mechanical wear. Many

researchers developed adaptive friction compensation for various applications

using different adaptation techniques and models (Canudas et al., 1986; Li and

Cheng, 1994). However, to obtain a good estimate of friction using the adaptive

approach, one needs to persistently excite the system (Astrom and Wittenmark,

1994). In our system, the input signals do not have this characteristic.

Moreover, friction can be assumed to be constant during the operation without

affecting the system performance. This enables us to estimate the friction off-

line using an appropriate persistent excitation.

The estimation process requires a model of friction. Friction models have been ex-

tensively discussed in the literature (Armstrong et al., 1994; Canudas, 1995). It is

well established that friction is a function of the velocity; however, there is

disagreement about the relationship between them. Among these models, we choose

the one proposed by Canudas et al. (1986) because of its simplicity and because it

represents most of the friction phenom- ena observed in our experiment, Figure 3.1.

This model consists of constant viscous and Coulomb terms. These constants

change with the motion direction.

9

1.4 Objectives
The main objectives of this thesis are-

 To design a wireless gantry crane which is safe and reliable to raise

& lower and move the load horizontally easily.

 To construct a wireless gantry crane.

 To test the performance of a wireless gantry crane.

10

CHAPTER 2

METHODOLOGY

2.1 Introduction
In this chapter we’ll discuss about the methods we’ll use for this project. We’ll discuss

about the process of work and design concept of modern gantry crane. We’ll also

discuss how wireless communication is used to control the crane from remote area.

2.2 Block Diagram

Figure 2.1: Block Diagram

This is our simple block diagram for designing a wireless gantry crane. We’ll use

Bluetooth communication protocol for wireless communication. With the simple

design, we can control two stepper motors for moving and lifting any load. The motor

1 will be used for moving the load within the X axis and the motor 2 will be used for

lifting the load within Y axis.

We’ll be using an app to control the crane through the Bluetooth module. We’ll send

control command from the smartphone via Bluetooth, and the Bluetooth module on the

system will receive the command and execute the specific program as per the command

it received. For example, if we send a command character “L” as represented as left,

the controller will move the crane to the left by controlling the stepper motor 1 as its

use for moving left and right. Similarly for other commands, the system will execute

the function for each individual command.

11

2.3 Circuit Diagram

Figure 2.2: Circuit diagram of Wireless Control Crane system

In this circuit, we’ve used Arduio NANO as the main controller of the system. A

Bluetooth module to receive command from smartphone. Two stepper motor driver to

drive stepper motor. And two limit switch to stop motors at the end points.

The Bluetooth module is connected to the pin 7 and 4 of the controller. The transmitter

pin of the Bluetooth module is connected to the pin 7 of the controller and the receiver

pin of the Bluetooth module is connected to the pin 4 of the controller. In this way of

connection, the module communicates with the controller.

The limit switch 1 is connected to the pin A0 of the controller and the limit switch 2 is

connected to the pin A1 of the controller. Although A0 and A1 are the analog pin, but

it can also act as digital IO pin. In this system we’ve used these pin as digital input.

The motor drivers are connected to the controller as simple as it shows. We’ve used

only two pins to control each motor. For the motor 1, we’ve connected the DIR

(Direction) pin to the pin 2 of the controller. And STEP (Step pin) pin is connected to

the pin 5 of the controller. For the motor 2, the DIR pin is connected to the pin 3 of the

controller and STEP pin is connected to the pin 6 of the controller. And the motors are

connected to each motor driver.

12

2.4 Working procedure
In this system, when the power is connected, the controller initializes all set up. With

the android app we can send command to the controller via Bluetooth module. We’ve

set some command characters for controlling the motors. The characters are, “l” for

moving the slider motor left, “r” for moving the slider motor right, “u” for lifting the

loads up and “d” for lifting the loads down. The limit switches are used to prevent

collision at each end point.

After starting the app, we need to connect to the Bluetooth module of the system. To

connect with the Bluetooth module, we first need to open the app called “Bluetooth

SPP Pro”. In this app, on startup we’ll see the Bluetooth module names to connect. In

our case, we’ve used HC-06 model. So we’ll select HC-06 from the list and connect to

the module. For the first time connection, we may need to enter a password. The default

password is “1234” or “0000”. After connecting with the module we need to select the

keyboard mode to enter to the control panel. Here we’ll need to set the buttons to send

the commands. We’ll set the buttons in this manner; we’ll put the character “l” to the

left button, “r” to the right button, “u” to the up button and lastly “d” to the down button.

After setting up the buttons, we’re now set to send commands to the controller.

To move the slider motor right, we’ll press the “Right” button, thus it will send the

character “r” to the controller and the controller will move the slider motor to the right.

To move the slider motor left, we’ll press the “Left” button, thus it will send the

character “l” to the controller. In the similar way the up down commands will work.

13

CHAPTER 3

HARDWARE AND COMPONENT DESCRIPTION

3.1 Introduction

In this chapter we’ll discuss about the elements we’ve used for our project. We’ll

briefly discuss the working principle of each component. The pin configuration and

connection method of each component. We’ll also discuss about the characteristics of

each component. The electrical and mechanical parameters of all components.

3.2 Arduino NANO
Arduino is an open source computer hardware and software company, project, and user

community that designs and manufactures single-board

microcontrollers and microcontroller kits for building digital devices and interactive

objects that can sense and control objects in the physical world. The project's products

are distributed as open-source hardware and software, which are licensed under

the GNU Lesser General Public License (LGPL) or the GNU General Public

License (GPL), permitting the manufacture of Arduino boards and software

distribution by anyone. Arduino boards are available commercially in preassembled

form, or as do-it-yourself (DIY) kits.

Figure 3.1: Arduino NANO

https://en.wikipedia.org/wiki/Single-board_microcontroller
https://en.wikipedia.org/wiki/Single-board_microcontroller
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Open-source_hardware
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Do-it-yourself

14

Figure 3.2: Arduino NANO pins

Arduino board designs use a variety of microprocessors and controllers. The boards are

equipped with sets of digital and analog input/output (I/O) pins that may be interfaced

to various expansion boards (shields) and other circuits. The boards feature serial

communications interfaces, including Universal Serial Bus (USB) on some models,

which are also used for loading programs from personal computers. The

microcontrollers are typically programmed using a dialect of features from the

programming languages C and C++. In addition to using traditional compiler

toolchains, the Arduino project provides an integrated development environment (IDE)

based on the Processing language project.

The Arduino project started in 2003 as a program for students at the Interaction Design

Institute Ivrea in Ivrea, Italy, aiming to provide a low-cost and easy way for novices

and professionals to create devices that interact with their environment

using sensors and actuators. Common examples of such devices intended for beginner

hobbyists include simple robots, thermostats, and motion detectors.

The name Arduino comes from a bar in Ivrea, Italy, where some of the founders of the

project used to meet. The bar was named after Arduin of Ivrea, who was

the margrave of the March of Ivrea and King of Italy from 1002 to 1014

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Processing_(programming_language)
https://en.wikipedia.org/wiki/Interaction_Design_Institute_Ivrea
https://en.wikipedia.org/wiki/Interaction_Design_Institute_Ivrea
https://en.wikipedia.org/wiki/Ivrea
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Thermostat
https://en.wikipedia.org/wiki/Motion_detector
https://en.wikipedia.org/wiki/Arduin_of_Ivrea
https://en.wikipedia.org/wiki/Margrave
https://en.wikipedia.org/wiki/March_of_Ivrea
https://en.wikipedia.org/wiki/King_of_Italy

15

Figure 3.3: Arduino NANO pin out

3.2.1 Microcontroller: ATMEGA328P
The Atmel® picoPower® ATmega328/P is a low-power CMOS 8-bit microcontroller

based on the AVR® enhanced RISC architecture. By executing powerful instructions

in a single clock cycle, the ATmega328/P achieves throughputs close to 1MIPS per

MHz. This empowers system designer to optimize the device for power consumption

versus processing speed.

The Atmel AVR® core combines a rich instruction set with 32 general purpose working

registers. All the 32 registers are directly connected to the Arithmetic Logic Unit

(ALU), allowing two independent registers to be accessed in a single instruction

executed in one clock cycle. The resulting architecture is more code efficient while

achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega328/P provides the following features: 32Kbytes of In-System

Programmable Flash with Read-While-Write capabilities, 1Kbytes EEPROM, 2Kbytes

SRAM, 23 general purpose I/O lines, 32 general purpose working registers, Real Time

Counter (RTC), three flexible Timer/Counters with compare modes and PWM, 1 serial

programmable USARTs , 1 byte-oriented 2-wire Serial Interface (I2C), a 6- channel

10-bit ADC (8 channels in TQFP and QFN/MLF packages) , a programmable

16

Watchdog Timer with internal Oscillator, an SPI serial port, and six software selectable

power saving modes. The Idle mode stops the CPU while allowing the SRAM,

Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-

down mode saves the register contents but freezes the Oscillator, disabling all other

chip functions until the next interrupt or hardware reset. In Power-save mode, the

asynchronous timer continues to run, allowing the user to maintain a timer base while

the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and

all I/O modules except asynchronous timer and ADC to minimize switching noise

during ADC conversions. In Standby mode, the crystal/resonator oscillator is running

while the rest of the device is sleeping. This allows very fast start-up combined with

low power consumption. In Extended Standby mode, both the main oscillator and the

asynchronous timer continue to run. Atmel offers the QTouch® library for embedding

capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers.

The patented charge-transfer signal acquisition offers robust sensing and includes fully

debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS™)

technology for unambiguous detection of key events. The easy-to-use QTouch Suite

toolchain allows you to explore, develop and debug your own touch applications. The

device is manufactured using Atmel’s high density non-volatile memory technology.

The On-chip ISP Flash allows the program memory to be reprogrammed In-System

through an SPI serial interface, by a conventional nonvolatile memory programmer, or

by an On-chip Boot program running on the AVR core. The Boot program can use any

interface to download the application program in the Application Flash memory.

Software in the Boot Flash section will continue to run while the Application Flash

section is updated, providing true Read-While-Write operation. By combining an 8-bit

RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel

ATmega328/P is a powerful microcontroller that provides a highly flexible and cost

effective solution to many embedded control applications. The ATmega328/P is

supported with a full suite of program and system development tools including: C

Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,

and Evaluation kits.

17

3.2.2 Features
High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family

• Advanced RISC Architecture

– 131 Powerful Instructions

– Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 20 MIPS Throughput at 20MHz

– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory Segments

– 32KBytes of In-System Self-Programmable Flash program Memory

– 1KBytes EEPROM

– 2KBytes Internal SRAM

– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

– Data Retention: 20 years at 85°C/100 years at 25°C(1)

– Optional Boot Code Section with Independent Lock Bits

• In-System Programming by On-chip Boot Program

• True Read-While-Write Operation

– Programming Lock for Software Security

• Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescaler and Compare

Mode

– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode,

and Capture Mode

– Real Time Counter with Separate Oscillator

– Six PWM Channels

– 8-channel 10-bit ADC in TQFP and QFN/MLF package

• Temperature Measurement

– 6-channel 10-bit ADC in PDIP Package

• Temperature Measurement

– Two Master/Slave SPI Serial Interface

18

– One Programmable Serial USART

– One Byte-oriented 2-wire Serial Interface (Philips I2C compatible)

– Programmable Watchdog Timer with Separate On-chip Oscillator

– One On-chip Analog Comparator

– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection

– Internal Calibrated Oscillator

– External and Internal Interrupt Sources

– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-

down, Standby, and Extended Standby • I/O and Packages

– 23 Programmable I/O Lines – 28-pin PDIP, 32-lead TQFP, 28-pad

QFN/MLF and 32-pad QFN/MLF

• Operating Voltage:

– 1.8 - 5.5V

• Temperature Range:

– -40°C to 105°C

• Speed Grade:

– 0 - 4MHz @ 1.8 - 5.5V

– 0 - 10MHz @ 2.7 - 5.5V

– 0 - 20MHz @ 4.5 - 5.5V

• Power Consumption at 1MHz, 1.8V, 25°C

– Active Mode: 0.2mA

– Power-down Mode: 0.1μA

– Power-save Mode: 0.75μA (Including 32kHz RTC)

19

3.2.3 Architecture & Pin out

Figure 3.4: ATMEGA328P pin out

20

3.3 Stepper Motor

A stepper motor, also known as step motor or stepping motor, is a brushless DC

electric motor that divides a full rotation into a number of equal steps. The motor's

position can then be commanded to move and hold at one of these steps without

any position sensor for feedback (an open-loop controller), as long as the motor is

carefully sized to the application in respect to torque and speed.

Figure 3.5: Stepper motor

Figure 3.6: Stepper motor model

https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Open-loop_controller
https://en.wikipedia.org/wiki/Torque

21

Switched reluctance motors are very large stepping motors with a reduced pole

count, and generally are closed-loop commutated.

Figure 3.7: Stepper Motor inside

Figure 3.8: Bipolar Stepper Motor

3.3.1 Fundamentals of operation
Brushed DC motors rotate continuously when DC voltage is applied to their

terminals. The stepper motor is known by its property of converting a train of input

https://en.wikipedia.org/wiki/Switched_reluctance_motor
https://en.wikipedia.org/wiki/Commutator_(electric)
https://en.wikipedia.org/wiki/Brushed_DC_motor
https://en.wikipedia.org/wiki/DC_voltage

22

pulses (typically square wave pulses) into a precisely defined increment in the shaft

position. Each pulse moves the shaft through a fixed angle.

Stepper motors effectively have multiple "toothed" electromagnets arranged around

a central gear-shaped piece of iron. The electromagnets are energized by an

external driver circuit or a micro controller. To make the motor shaft turn, first, one

electromagnet is given power, which magnetically attracts the gear's teeth. When

the gear's teeth are aligned to the first electromagnet, they are slightly offset from

the next electromagnet. This means that when the next electromagnet is turned on

and the first is turned off, the gear rotates slightly to align with the next one. From

there the process is repeated. Each of those rotations is called a "step", with

an integer number of steps making a full rotation. In that way, the motor can be

turned by a precise angle.

The circular arrangement of electromagnets is divided into groups, each group

called a phase, and there is an equal number of electromagnets per group. The

number of groups is chosen by the designer of the stepper motor. The

electromagnets of each group are interleaved with the electromagnets of other

groups to form a uniform pattern of arrangement. For example, if the stepper motor

has two groups identified as A or B, and ten electromagnets in total, then the

grouping pattern would be ABABABABAB.

Electromagnets within the same group are all energized together. Because of this,

stepper motors with more phases typically have more wires (or leads) to control the

motor.

3.3.2 Types

There are three main types of stepper motors: [8]

1. Permanent magnet stepper

2. Variable reluctance stepper

3. Hybrid synchronous stepper

Permanent magnet motors use a permanent magnet (PM) in the rotor and operate

on the attraction or repulsion between the rotor PM and the stator electromagnets.

Pulses move the rotor in discrete steps, CW or CCW. If left powered at a final step

a strong detent remains at that shaft location. This detent has a predictable spring

rate and specified torque limit; slippage occurs if the limit is exceeded. If current is

removed a lesser detent still remains, therefore holding shaft position against spring

https://en.wikipedia.org/wiki/Driver_circuit
https://en.wikipedia.org/wiki/Micro_controller
https://en.wikipedia.org/wiki/Integer_number
https://en.wikipedia.org/wiki/Stepper_motor#cite_note-R000534-1
https://en.wikipedia.org/w/index.php?title=Permanent_magnet_stepper&action=edit&redlink=1
https://en.wikipedia.org/wiki/Reluctance_motor
https://en.wikipedia.org/w/index.php?title=Hybrid_synchronous_stepper&action=edit&redlink=1
https://en.wikipedia.org/wiki/Permanent_magnet_motor
https://en.wikipedia.org/wiki/Permanent_magnet
https://en.wikipedia.org/wiki/Stator
https://en.wikipedia.org/wiki/Detent
https://en.wikipedia.org/wiki/Detent

23

or other torque influences. Stepping can then be resumed while reliably being

synchronized with control electronics.

Clarification- Stepper motor detent is analogous to brushless dc motor cogging. In

the case of constant speed brushless dc motor, magnetic cogging is of concern for

torque ripple effects

Variable reluctance (VR) motors have a plain iron rotor and operate based on the

principle that minimum reluctance occurs with minimum gap, hence the rotor

points are attracted toward the stator magnet poles. Whereas hybrid synchronous

are a combination of the permanent magnet and variable reluctance types, to

maximize power in a small size[9].

VR motors do not have power off detents.

3.3.3 Two-phase stepper motors
There are two basic winding arrangements for the electromagnetic coils in a two phase

stepper motor: bipolar and unipolar.

3.3.3.1 Unipolar motors
A unipolar stepper motor has one winding with center tap per phase. Each section

of windings is switched on for each direction of magnetic field. Since in this

arrangement a magnetic pole can be reversed without switching the direction of

current, the commutation circuit can be made very simple (e.g., a single transistor)

for each winding. Typically, given a phase, the center tap of each winding is made

common: giving three leads per phase and six leads for a typical two phase motor.

Often, these two phase commons are internally joined, so the motor has only five

leads.

A microcontroller or stepper motor controller can be used to activate the

drive transistors in the right order, and this ease of operation makes unipolar motors

popular with hobbyists; they are probably the cheapest way to get precise angular

movements. For the experimenter, the windings can be identified by touching the

terminal wires together in PM motors. If the terminals of a coil are connected, the

shaft becomes harder to turn. One way to distinguish the center tap (common wire)

from a coil-end wire is by measuring the resistance. Resistance between common

wire and coil-end wire is always half of the resistance between coil-end wires. This

is because there is twice the length of coil between the ends and only half from

https://en.wikipedia.org/wiki/Detent
https://en.wikipedia.org/wiki/Cogging_torque
https://en.wikipedia.org/wiki/Cogging_torque
https://en.wikipedia.org/w/index.php?title=Variable_reluctance&action=edit&redlink=1
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Magnetic_reluctance
https://en.wikipedia.org/wiki/Magnet
https://en.wikipedia.org/wiki/Stepper_motor#cite_note-
https://en.wikipedia.org/wiki/Center_tap
https://en.wikipedia.org/wiki/Commutator_(electric)
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Transistor

24

center (common wire) to the end. A quick way to determine if the stepper motor is

working is to short circuit every two pairs and try turning the shaft. Whenever a

higher than normal resistance is felt, it indicates that the circuit to the particular

winding is closed and that the phase is working.

Figure 3.9: Unipolar stepper motor coils

Figure 3.10: Unipolar Motor

3.3.3.2 Bipolar motor
Bipolar motors have a single winding per phase. The current in a winding needs to

be reversed in order to reverse a magnetic pole, so the driving circuit must be more

complicated, typically with an H-bridge arrangement (however there are several

off-the-shelf driver chips available to make this a simple affair). There are two leads

per phase, none are common.

A typical driving pattern for a two coil bipolar stepper motor would be: A+ B+ A−

B−. I.e. drive coil A with positive current, then remove current from coil A; then

drive coil B with positive current, then remove current from coil B; then drive coil

A with negative current (flipping polarity by switching the wires e.g. with an H

bridge), then remove current from coil A; then drive coil B with negative current

(again flipping polarity same as coil A); the cycle is complete and begins anew.

https://en.wikipedia.org/wiki/H-bridge

25

Static friction effects using an H-bridge have been observed with certain drive

topologies.[10]

Dithering the stepper signal at a higher frequency than the motor can respond to

will reduce this "static friction" effect.

Because windings are better utilized, they are more powerful than a unipolar motor

of the same weight. This is due to the physical space occupied by the windings. A

unipolar motor has twice the amount of wire in the same space, but only half used

at any point in time, hence is 50% efficient (or approximately 70% of the torque

output available). Though a bipolar stepper motor is more complicated to drive, the

abundance of driver chips means this is much less difficult to achieve.

An 8-lead stepper is like a unipolar stepper, but the leads are not joined to common

internally to the motor. This kind of motor can be wired in several configurations:

 Unipolar.

 Bipolar with series windings. This gives higher inductance but lower current

per winding.

 Bipolar with parallel windings. This requires higher current but can perform

better as the winding inductance is reduced.

 Bipolar with a single winding per phase. This method will run the motor on

only half the available windings, which will reduce the available low speed

torque but require less current

Figure 3.11: Bipolar Stepper Motor

https://en.wikipedia.org/wiki/Stepper_motor#cite_note-3

26

3.4 Stepper Motor Controller

Figure 3.12: Stepper motor driver top view

Figure 3.13: Stepper motor driver pin side

At the heart of the module is a Microstepping Driver from Allegro – A4988. It’s

small in stature (only 0.8″ × 0.6″) but still packs a punch.

27

Figure 3.14: A4988 Stepper Motor Driver Chip

The A4988 stepper motor driver has output drive capacity of up to 35 V and ±2A

and lets you control one bipolar stepper motor at up to 2A output current per coil

like NEMA 17.

The driver has built-in translator for easy operation. This reduces the number of

control pins to just 2, one for controlling the steps and other for controlling spinning

direction.

3.4.1 A4988 Motor Driver Pin out

The A4988 driver has total 16 pins that interface it to the outside world. The

connections are as follows:

Figure 3.15: A4988 driver module pin out

Let’s familiarize ourselves with all the pins one by one.

3.4.2 Power Connection Pins

The A4988 actually requires two power supply connections.

28

Figure 3.16: A4988 driver power pins

VDD & GND is used for driving the internal logic circuitry which can be 3V to

5.5 V.

Whereas,

VMOT & GND supplies power for the motor which can be 8V to 35 V.

According to datasheet, the motor supply requires appropriate decoupling

capacitor close to the board, capable of sustaining 4A.

3.4.3 Micro step Selection Pins

The A4988 driver allows microstepping by allowing intermediate step locations.

This is achieved by energizing the coils with intermediate current levels.

For example, if you choose to drive NEMA 17 having 1.8° or 200 steps per

revolution in quarter-step mode, the motor will give 800 microsteps per revolution.

Figure 3.17: Micro step selection pins

The A4988 driver has three step size (resolution) selector inputs viz. MS1, MS2 &

MS3. By setting appropriate logic levels to these pins we can set the motors to one

of the five step resolutions.

MS1 MS2 MS3 Microstep Resolution

Low Low Low Full step

29

High Low Low Half step

Low High Low Quarter step

High High Low Eighth step

High High High Sixteenth step

These three microstep selection pins are pulled LOW by internal pull-down

resistors, so if we leave them disconnected, the motor will operate in full step mode.

3.4.4 Control Input Pins
The A4988 has two control inputs viz. STEP and DIR.

Figure 3.18: A4988 driver Control input pin

STEP input controls the mirosteps of the motor. Each HIGH pulse sent to this pin

steps the motor by number of microsteps set by Microstep Selection Pins. The faster

the pulses, the faster the motor will rotate.

DIR input controls the spinning direction of the motor. Pulling it HIGH drives the

motor clockwise and pulling it LOW drives the motor counterclockwise.

If you just want the motor to rotate in a single direction, you can tie DIR directly to

VCC or GND accordingly.

3.4.5 Pins For Controlling Power States
The A4988 has three different inputs for controlling its power states viz. EN, RST,

and SLP.

30

Figure 3.19: A4988 Power States Control pins

EN Pin is active low input, when pulled LOW(logic 0) the A4988 driver is enabled.

By default this pin is pulled low so the driver is always enabled, unless you pull it

HIGH.

SLP Pin is active low input. Meaning, pulling this pin LOW puts the driver in sleep

mode, minimizing the power consumption. You can invoke this especially when

the motor is not in use to conserve power.

RST is also an active low input. When pulled LOW, all STEP inputs are ignored,

until you pull it HIGH. It also resets the driver by setting the internal translator to

a predefined Home state. Home state is basically the initial position from where the

motor starts and it’s different depending upon the microstep resolution.

3.4.6 Output Pins

The A4988 motor driver’s output channels are broken out to the edge of the

module with 1B, 1A, 2A & 2B pins.

Figure 3.20: A4988 driver Output pins

You can connect any bipolar stepper motor having voltages between 8V to 35 V

to these pins.

31

Each output pin on the module can deliver up to 2A to the motor. However, the

amount of current supplied to the motor depends on system’s power supply,

cooling system & current limiting setting.

3.4.7 Cooling System – Heatsink

Excessive power dissipation of the A4988 driver IC results in the rise of

temperature that can go beyond the capacity of IC, probably damaging itself.

Even if the A4988 driver IC has a maximum current rating of 2A per coil, the

chip can only supply approximately 1A per coil without getting overheated.

For achieving more than 1A per coil, a heat sink or other cooling method is

required.

Figure 3.21: Heat sink for A4988 driver

The A4988 driver usually comes with a heatsink. It is advisable to install it before

you use the driver.

3.4.8 Current limiting

Before using the motor, there’s a small adjustment that we need to make. We need

to limit the maximum amount of current flowing through the stepper coils and

prevent it from exceeding the motor’s rated current.

Figure 3.22: Current limiting potentiometer

32

There’s a small trimmer potentiometer on the A4988 driver that can be used to set

the current limit. You should set the current limit to be at or lower than the current

rating of the motor.

To make this adjustment there are two methods:

Method 1:

In this method we are going to set the current limit by measuring the voltage (Vref)

on the “ref” pin.

1. Take a look at the datasheet for your stepper motor. Note down it’s rated

current. In our case we are using NEMA 17 200steps/rev, 12V 350mA.

2. Put the driver into full-step mode by leaving the three microstep selection pins

disconnected.

3. Hold the motor at a fixed position by not clocking the STEP input.

4. Measure the voltage (Vref) on the metal trimmer pot itself while you adjust it.

5. Adjust the Vref voltage using the formula

Current Limit = Vref x 2.5

For example, if your motor is rated for 350mA, you would adjust the reference

voltage to 0.14V.

Figure 3.23: Current Adjustment method 1

Method 2:

In this method we are going to set the current limit by measuring the current running

through the coil.

33

1. Take a look at the datasheet for your stepper motor. Note down it’s rated

current. In our case we are using NEMA 17 200steps/rev, 12V 350mA.

2. Put the driver into full-step mode by leaving the three microstep selection

pins disconnected.

3. Hold the motor at a fixed position by not clocking the STEP input. Do not

leave the STEP input floating, connect it to logic power supply(5V)

4. Place the ammeter in series with one of the coils on your stepper motor and

measure the actual current flowing.

5. Take a small screwdriver and adjust the current limit potentiometer until you

reach rated current.

Figure 3.24: Current Adjustment method 2

3.4.9 Wiring A4988 stepper motor driver with Arduino

UNO
Now that we know everything about the driver, we will connect it to our Arduino.

Connections are fairly simple. Start by connecting VDD and GND (next to VDD)

to the 5V and ground pins on the Arduino. DIR and STEP input pins are connected

to #2 & #3 digital output pins on Arduino respectively. Connect the stepper motor

to the 2B, 2A, 1A & 1B pins. Actually A4988 is conveniently laid out to match the

4-pin connector on several bipolar motors so, that shouldn’t be a problem.

Next, Connect RST pin to the adjacent SLP/SLEEP pin to keep the driver enabled.

Also keep the microstep selection pins disconnected to operate the motor in full

step mode.

34

Finally, connect the motor power supply to the VMOT and GND pins. Remember

to put a large 100µF decoupling electrolytic capacitor across motor power supply

pins, close to the board.

Figure 3.25: Wiring method of the driver

3.5 Bluetooth Module

HC-06 is a Bluetooth module designed for establishing short range wireless data

communication between two microcontrollers or systems. The module works

on Bluetooth 2.0 communication protocol and it can only act as a slave device.

This is cheapest method for wireless data transmission and more flexible compared

to other methods and it even can transmit files at speed up to 2.1Mb/s.

HC-06 uses frequency hopping spread spectrum technique (FHSS) to avoid

interference with other devices and to have full duplex transmission. The device

works on the frequency range from 2.402 GHz to 2.480GHz.

Figure 3.26: Bluetooth module top

35

Figure 3.27: Bluetooth module back

3.5.1 Pin configuration

Pin Name Function

1 EN The pin state determines whether the module works in AT

command mode or normal mode

[High=AT commands receiving mode(Commands

response mode), Low or NC = Bluetooth module normally

working]

2 Vcc +5V Positive supply needs to be given to this pin for powering the

module

3 Gnd Connect to ground

36

HC-06 module has six pins as shown in the pinout. In them we only need to use

four for successfully interfacing the module. Some breakout boards will only leave

four output pins only because of this reason.

3.5.2 HC-06 Features and Electrical characteristics

 Bluetooth protocol: Bluetooth V2.0 protocol standard

 Power Level: Class2(+6dBm)

 Band: 2.40GHz—2.48GHz, ISM Band

 Receiver sensitivity: -85dBm

 USB protocol: USB v1.1/2.0

 Modulation mode: Gauss frequency Shift Keying

 Safety feature: Authentication and encryption

 Operating voltage range:+3.3V to +6V

 Operating temperature range: -20ºC to +55ºC

 Operating Current: 40mA

3.5.3 HC-06 Bluetooth Module Advantages
 HC-06 is best option when short distance wireless communication is needed.

The module is used for wireless communications of less than 100 meters.

 The module is very easy to interface and to communicate.

 The module is one of the cheapest solutions for wireless communication of

all types present in the market.

 The module consumes very less power to function and can be used on

battery operated mobile systems.

4 TXD Serial data is transmitted by module through this pin (at 9600bps

by default), 3.3V logic

5 RXD Serial data is received by module through this pin (at 9600bps by

default),3.3V logic

6 State The pin is connected to the LED on the board to represent the state

of the module

37

 The module can be interfaced with almost all controllers or processors as it

uses UART interface.

3.5.4 How to use HC-06 Bluetooth Module

The communication with this HC-06 module is done through UART interface. The

data is sent to the module or received from the module though this interface. So we

can connect the module to any microcontroller or directly to PC which has RS232

port (UART interface). A typical interface circuit of the module to an arduino is

shown below.

Figure 3.28: Connection diagram of Bluetooth module

Here the module is connected to +5V standard regulated power supply and UART

interface is established as shown in figure. All you need to do is connect RXD of

arduino to TXD of module and TXD of arduino is connected to RXD of module

through a resistor voltage divider. This voltage divider is provided for converting

5V logic signal sent by arduino to +3.3V logic signals which are suitable for the

module. The ground of arduino and module must be connected for voltage

reference in case separate power sources are used.

After connecting the module you have to write the program in arduino IDE to

receive and send data to the module. For successful wireless communication you

need to remember a few things:

38

 In programming you need to set default baud rate of UART serial

communication to 9600. The value is default setting of module and can be

change in program.

 The module is a slave and so you need a master to establish a successful

wireless interface. For that you need another [arduino + module (with master

feature)] setup or you can use a smart phone as a master and search for HC-06

slave.

 The master searches for slave and connects to it after authenticated with

password. The HC-06 module has default password ‘1234’ which can be

changed.

 In program you can receive data master sends (After authentication) and

perform tasks based on it.

 Also you can download libraries for module through the websites and use

them to make communication easy. All you need to do is download these

libraries and call them in programs. Once the header file is included, you can use

simple commands in the program to tell the arduino to send or receive data. The

module sends this data to master through wireless Bluetooth. If the module

receives any data from master, it will transmit it to arduino through UART serial

communication.

 You can also interface HC-06 to PC using RS232 cable. Once you interface

is done you can use serial terminal on PC or any similar software to send or

receive data to module. You need to type in AT command in serial terminal to

communicate with the module and these commands can be downloaded here.

3.5.5 Applications
 Hobby projects

 Engineering applications

 Robotics

 Mobile Phone Accessories

 Servers

 Computer Peripherals

 Sports and Leisure Equipment

 USB Dongles

http://wiki.sunfounder.cc/images/7/7b/HC-06_AT_Commands_Reference.pdf

39

3.6 Leads Screw
A leadscrew (or lead screw), also known as a power screw or translation screw, is

a screw used as a linkage in a machine, to translate turning motion into linear

motion. Because of the large area of sliding contact between their male and

female members, screw threads have larger frictional energy losses compared to

other linkages. They are not typically used to carry high power, but more for

intermittent use in low power actuator and positioner mechanisms. Leadscrews are

commonly used in linear actuators, machine slides (such as in machine

tools), vises, presses, and jacks. Leadscrews are a key component in electric linear

actuators.

Figure 3.29: Leads Screw
Leadscrews are manufactured in the same way as other thread forms (they may

be rolled, cut, or ground).

A lead screw is sometimes used with a split nut also called half nut which allows

the nut to be disengaged from the threads and moved axially, independently of the

screw's rotation, when needed (such as in single-point threading on a manual lathe).

3.7 Coupling

A coupling is a device used to connect two shafts together at their ends for the

purpose of transmitting power. The primary purpose of couplings is to join two

pieces of rotating equipment while permitting some degree of misalignment or end

movement or both. In a more general context, a coupling can also be a mechanical

device that serves to connect the ends of adjacent parts or objects. Couplings do not

https://en.wikipedia.org/wiki/Screw_(simple_machine)
https://en.wikipedia.org/wiki/Linkage_(mechanical)
https://en.wikipedia.org/wiki/Turning_motion
https://en.wikipedia.org/wiki/Linear_motion
https://en.wikipedia.org/wiki/Linear_motion
https://en.wikipedia.org/wiki/Gender_of_connectors_and_fasteners
https://en.wikipedia.org/wiki/Gender_of_connectors_and_fasteners
https://en.wikipedia.org/wiki/Screw_thread
https://en.wikipedia.org/wiki/Linkage_(mechanical)
https://en.wikipedia.org/wiki/Linear_actuator
https://en.wikipedia.org/wiki/Machine_tool
https://en.wikipedia.org/wiki/Machine_tool
https://en.wikipedia.org/wiki/Vise_(tool)
https://en.wikipedia.org/wiki/Mechanical_press
https://en.wikipedia.org/wiki/Jack_(device)
https://en.wikipedia.org/wiki/Threading_(manufacturing)
https://en.wikipedia.org/wiki/Split_nut
https://en.wikipedia.org/wiki/Threading_(manufacturing)#Single-point_threading

40

normally allow disconnection of shafts during operation, however there are torque

limiting couplings which can slip or disconnect when some torque limit is

exceeded. Selection, installation and maintenance of couplings can lead to reduced

maintenance time and maintenance cost.

Figure 3.30: Coupler

3.7.1 Usage

Shaft couplings are used in machinery for several purposes. A primary function is

to transfer power from one end to another end (ex: motor transfer power to pump

through coupling).

Other common uses:

 To alter the vibration characteristics of rotating units

 To connect driving and the driven part

 To introduce protection against overloads

 To provide for the connection of shafts of units that are manufactured

separately (such as a motor and generator) and to provide for

disconnection for repairs or alterations

 To provide for misalignment of the shafts

 To introduce mechanical flexibility

 To reduce the transmission of shock loads from one shaft to another

 To slip when overload occurs

3.8 Pillow Block Mounted Bearing
A pillow block usually refers to housing with an included anti-friction bearing. A

pillow block refers to any mounted bearing wherein the mounted shaft is in a

parallel plane to the mounting surface, and perpendicular to the center line of the

mounting holes, as contrasted with various types of flange blocks or flange units.

A pillow block may contain a bearing with one of several types of rolling elements,

https://en.wikipedia.org/wiki/Torque_limiter
https://en.wikipedia.org/wiki/Torque_limiter

41

including ball, cylindrical roller, spherical roller, tapered roller, or metallic or

synthetic bushing. The type of rolling element defines the type of pillow block.

These differ from "plummer blocks" which are bearing housings supplied without

any bearings and are usually meant for higher load ratings and a separately installed

bearing.

Figure 3.31: Pillow block mounted bearing
The fundamental application of both types is the same, which is to mount a bearing

safely enabling its outer ring to be stationary while allowing rotation of the inner

ring. The housing is bolted to a foundation through the holes in the base. Bearing

housings may be either split type or solid type. Split type housings are usually two-

piece housings where the cap and base may be detached, while others may be

single-piece housings. Various sealing arrangements may be provided to prevent

dust and other contaminants from entering the housing. Thus the housing provides

a clean environment for the environmentally sensitive bearing to rotate free from

contaminants while also retaining lubrication, either oil or grease, hence increasing

its performance and duty cycle.

Bearing housings are usually made of grey cast iron. However, various grades of

metals can be used to manufacture the same, including ductile iron, steel, stainless

steel, and various types of thermoplastics and polyethylene-based plastics. The

bearing element may be manufactured from 52100 chromium steel alloy (the most

common), stainless steel, plastic, or bushing materials such as SAE660 cast bronze,

or SAE841 oil impregnated sintered bronze, or synthetic materials.

ISO 113 specifies internationally accepted dimensions for plummer blocks.

42

3.9 Angle bracket
An angle bracket or angle brace or Angle Cleat is an L-shaped fastener used to join

two parts generally at a 90 degree angle. It is typically made of metal but it can also

be made of wood or plastic. The metallic angle brackets feature holes in them for

screws. Its typical use is to join a wooden shelf to a wall or to join two furniture

parts together.

Figure 3.32: L shape angle bracket
Retailers also use names like corner brace, corner bracket brace, shelf bracket, or L

bracket.

When the holes are enlarged for allowing adjustments, the name is angle stretcher

plates or angle shrinkage.

Figure 3.33: L shape angle installed with motor

https://en.wikipedia.org/wiki/Fastener
https://en.wikipedia.org/wiki/Shelf_(storage)

43

CHAPTER 4

DISCUSSION AND RESULT

4.1 Introduction
In this chapter we’ll discuss about our final project and its result. We’ll discuss how it

behaves after completing all works. We’ll see some working demo of our project. Also

we’ll check and test all of the procedure to run our project.

4.2 Discussion

In this project we’ve learned so many things about mechanical and electronic method

to control a crane. We’ve learned how the combination of mechanical and electronics

can be very effective in load bearing systems. We can implement these kinds of

combination system in many mechanical systems that will help to increase the

efficiency of the system and also reduce the man power of total system. We should

implement electronic combination system in every possible mechanical system thus it

will provide a good service and efficiency of the system. It will be more easy and user

friendly to control such mechanical systems.

4.3 Result
After connecting all electronic parts and combining the mechanical parts, we’ve

established a rather basic structure of a gantry crane. The real crane will may not look

exactly the same, but will work as the same principle as we’ve made. Here are some

images of our work:

44

Chapter 5

Conclusion

5.1 Conclusion

In this project a prototype of wireless gantry crane which can be operated by a

smartphone has been designed and fabricated. The crane has been designed to a pay

load of 0.5-1 kg. The crane is controlled by a smartphone that has Bluetooth

connectivity. The crane can be controlled from a distance of 10 to 15 meters.

The system is very easy to use and there is no problem of lots of wires like the

traditional gantry cranes.

 .

5.2 Future Scope

 We are currently using Bluetooth communication protocol to control the crane

wirelessly. But in future we can implement WiFi network system along with

internet, that will allow us to not only control the crane from a wider distance

than Bluetooth, but also we can control the crane from anywhere in the planet

over the internet.

 For now our crane can move only two direction. We can add a third direction

to allow the crane to move loads to anywhere on space.

 We can also add voice control system to the crane. So that will allow the

physically handicap but educated person to control the crane without any

problem.

.

45

REFERENCES

[1] Abdel-Rahman, E. M., Nayfeh, A. H., and Masoud, Z. N., 2002, “Dynamics

and control of cranes: A Review,” to appear in Journal of Vibration and

Control 9.

[2] Al-Alaoui, M. A., 1993, “Novel digital integrator and differentiator,”

Electronic Letters

29(4), 376-378.

[3] Al-Alaoui, M. A., 1994, “Novel IIR differentiator from the Simpson

integration rule,” IEEE Transactions on Circuits and Systems-1:

Fundamental Theory and Applications 41(2), 186–187.

[4] Al-Moussa, A., Nayfeh, A., and Kachroo, P., 2001, “Control of rotary

cranes us- ing fuzzy logic,” in ASME 2001 Design Engineering Technical

Conference and Com- puters and Information in Engineering Conference,

Pittsburgh, PA, September 9-12, DETC2001/VIB-21598.

[5] Armstrong B., Dupont, P., and Canudas, C., 1994, “A survey of models,

analysis tools, and compensation methods for the control of the machines

with friction,” Automatica 30(70), 1083–1138.

[6] Astrom, K. J. and Wittenmark, B., 1994, Adaptive Control, Addison-

Wesley, CA.

[7] Auernig, J. W. and Troger, H., 1987, “Time optimal control of overhead

cranes with hoisting of the load,” Automatica 23(4), 437–447.

[8] Liptak, Bela G. (2005). Instrument Engineers' Handbook: Process Control

and Optimization. CRC Press. p. 2464. ISBN 978-0-8493-1081-2.

[9] Tarun, Agarwal. "Stepper Motor – Types, Advantages & Applications"

[10] "Friction and the Dead Zone" by Douglas W

Jones https://homepage.divms.uiowa.edu/~jones/step/physics.html#fricti

on

https://books.google.com/books?id=TxKynbyaIAMC&dq=Instrument+Engineers%27+Handbook&pg=PP1&ots=jvrdPR7wxJ&sig=1hOUpQQDQH_8drYjW1yPVocJSYI&hl=en&sa=X&oi=book_result&resnum=1&ct=result
https://books.google.com/books?id=TxKynbyaIAMC&dq=Instrument+Engineers%27+Handbook&pg=PP1&ots=jvrdPR7wxJ&sig=1hOUpQQDQH_8drYjW1yPVocJSYI&hl=en&sa=X&oi=book_result&resnum=1&ct=result
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8493-1081-2
https://www.elprocus.com/stepper-motor-types-advantages-applications/
https://homepage.divms.uiowa.edu/~jones/step/physics.html#friction
https://homepage.divms.uiowa.edu/~jones/step/physics.html#friction

46

APPENDIX

Code:

#include <SoftwareSerial.h>

SoftwareSerial bt(7, 4);

// defines pins numbers

const int stepPin1 = 5;

const int dirPin1 = 2;

const int stepPin2 = 6;

const int dirPin2 = 3;

const int leftLimit = A0;

const int rightLimit = A1;

bool limitFlagLeft = true;

bool limitFlagRight = true;

char A;

int i = 0;

void setup()

{

 Serial.begin(9600);

 bt.begin(9600);

 // Sets the two pins as Outputs

 pinMode(stepPin1, OUTPUT);

 pinMode(dirPin1, OUTPUT);

 pinMode(stepPin2, OUTPUT);

 pinMode(dirPin2, OUTPUT);

 pinMode(leftLimit, INPUT_PULLUP);

47

 pinMode(rightLimit, INPUT_PULLUP);

 Serial.println ("Device is ready to go");

}

void loop()

{

 int limL = digitalRead (leftLimit);

 int limR = digitalRead (rightLimit);

 if (bt.available())

 {

 A = bt.read();

 Serial.write (A);

 switch (A)

 {

 case'l': left();

 break;

 case'r': right();

 break;

 case'u': up();

 break;

 case'd': down();

 break;

 }

 }

 if (limL == LOW)

 {

 limitFlagLeft = false;

 }

 else

48

 {

 limitFlagLeft = true;

 }

 if (limR == LOW)

 {

 limitFlagRight = false;

 }

 else

 {

 limitFlagRight = true;

 }

}

void left()

{

 if (limitFlagLeft)

 {

 digitalWrite(dirPin1, HIGH); // Enables the motor to move in a particular direction

 // Makes 200 pulses for making one full cycle rotation

 for (int x = 0; x < 30; x++) {

 digitalWrite(stepPin1, HIGH);

 delayMicroseconds(800);

 digitalWrite(stepPin1, LOW);

 delayMicroseconds(800);

 }

 }

}

void right()

{

49

 if (limitFlagRight)

 {

 digitalWrite(dirPin1, LOW); // Enables the motor to move in a particular direction

 // Makes 200 pulses for making one full cycle rotation

 for (int x = 0; x < 30; x++) {

 digitalWrite(stepPin1, HIGH);

 delayMicroseconds(800);

 digitalWrite(stepPin1, LOW);

 delayMicroseconds(800);

 }

 }

}

void up()

{

 digitalWrite(dirPin2, HIGH); // Enables the motor to move in a particular direction

 // Makes 200 pulses for making one full cycle rotation

 for (int x = 0; x < 30; x++) {

 digitalWrite(stepPin2, HIGH);

 delayMicroseconds(800);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(800);

 }

}

void down()

{

 digitalWrite(dirPin2, HIGH); // Enables the motor to move in a particular direction

 // Makes 200 pulses for making one full cycle rotation

 for (int x = 0; x < 30; x++) {

 digitalWrite(stepPin2, HIGH);

50

 delayMicroseconds(800);

 digitalWrite(stepPin2, LOW);

 delayMicroseconds(800);

 }

}

