"NUMERICAL ANALYSIS OF FLUID FLOW DUE TO FREE CONVECTION IN A LID-DRIVEN CAVITY HAVING A HEATED CIRCULAR HOLLOW CYLINDER"

A Thesis submitted by

MD. SHAJEDUR RAHMAN MOHAMMAD YAHIYA ARFAN MD. MASUD RANA MD. MAMUN MONDOL BME1503007664 BME1702012151 BME1601008137 BME1601008246

Under the supervision of MD. SOJIB KAISAR

Lecturer & Course Coordinator, Department of Mechanical Engineering, Sonargaon University, Dhaka-1215, Bangladesh.

SONARGAON UNIVERSITY (SU)

DEPARTMENT OF MECHANICAL ENGINEERING

February 2020

SUPERVISOR'S DECLARATION

I hereby declare to the Department of Mechanical Engineering Sonargaon University, Dhaka, Bangladesh that I have checked this "**Numerical analysis of fluid flow due to free convection in a lid-driven cavity having a heated circular hollow cylinder**" and in my opinion this thesis is satisfactory in terms of scope and quality for the partial achievement of the degree of Bachelor of Science in Mechanical Engineering.

Supervisor:

Signature,

.....

MD. SOJIB KAISAR, Lecturer & Course Coordinator, Department of Mechanical Engineering, Sonargaon University (SU) Dhaka-1215, Bangladesh.

STUDENT'S DECLARATION

This is certified that the work presented in this thesis titled "**Numerical analysis of fluid flow due to free convection in a lid-driven cavity having a heated circular hollow cylinder**" is an outcome of the investigation carried out by authors under the supervision of Md. Sojib Kaisar, Lecturer & Course Coordinator, Department of Mechanical Engineering, Sonargaon University.

SUBMITTED BY:

MD. SHAJEDUR RAHMAN MOHAMMAD YAHIYA ARFAN MD. MASUD RANA MD. MAMUN MONDOL BME1503007664 BME1702012151 BME1601008137 BME1601008246

ACKNOWLEDGEMENT

All praise is to Allah swbt. We seek for this help, and we ask for this forgiveness. At first, we would like to express eternal gratitude to him for the successful completion of this study.

We would like to especially thank to our supervisor Md. Sojib Kaisar for his directions assistance and guidance. His kindness and thoughtful directions have made the progress of our thesis much smoother.

Also, we would like to thank Md. Mostofa Hossain, Head of the Department of Mechanical Engineering, to give us the opportunity to carry out our research on such an important topic under our supervisor. We thank our course mate who provided their valuable guidelines in preparing the methodology and results, which was vitally important for the completion of this work.

Last but not the least, we express our indebtedness to this glorious institution, Sonargaon University.

Thank You

The Authors

ABSTRACT

Free convection heat transfer induced by the combined effect of mechanically driven lid and buoyancy force in a circular hollow cylinder. In the enclosure, the horizontal walls are maintained an uniform temperature at any point. The present study simulates a realistic system such as heat transfer in heated boiler cell. The governing equations for the problem are firstly transformed into non-dimensional form. The computation carried out with Grashof and Rayleigh number. The analysis is transmitted with the variation of streamlines and isothermals for different Rayleigh number ranging from 10³ to 10⁷ where Prandtl number kept 0.71 constant. Moreover, the results of this investigation are shown by the variation of fluid temperature in the enclosure with the different perimeters (velocity, Pressure).

CONTENTS

Acknowledgement	IV
Abstract	V
Contents	VI
List of Figures	IX
Nomenclature	Х

Chapter 1

Introduction	01
--------------	----

Chapter	2
---------	---

Literature Review	02
2.1 Background	02
2.2. Basics of fluid dynamics	03
2.2.1 Newtonian Fluid	03
2.2.2Non-Newtonian Fluid	03
2.3 Properties of Fluids	03
2.4 Fluid flow	03
2.4.1 Liquid and Gases	04

2.4.2 Compressible fluid	04
2.4.3 Incompressible fluid	04
2.4.4 Laminar Flow	05
2.4.5 Turbulent flow	05
2.4.6 Rotational and irrational Fluid flow	05
2.5 Heat transfer	06
2.5.1 Conduction	06
2.5.2 Convection	06
2.5.3 Radiation	06
2.6 Classification of Convection	07
2.6.1 Free convection	07
2.6.2 Forced convection	07
2.6.3 Mixed convection	07
2.7 Benchmark Problem	07
2.8 Lid-driven cavity	08
2.9 Dimensionless Number	08
2.10 Non-dimensional or Dimensionless Parameters	09
2.10.1 Reynolds Number(Re)	
2.10.2 Grashof Number (Gr)	09
2.10.3 Prandtl Number (Pr)	10
2.10.4 Rayleigh Number	11
	12

Chapter 3

3. Physical Configuration and Mathematical Model	
3.1 Physical Configuration	13
3.2 Mathematical Model	13
3.3 Two dimensional Equations for free convection	14
3.4 Non dimensional Equations for free convection	14
3.5 Continuity equation	15
3.6 Y-momentum equation	13

Chapter 4

4. Simulation and Result	16

4.1 Numerical Technique	16
4.2 Mesh Generation	16
4.3 Model Simulation	17
4.3.1 Pressure line	16
4.3.2 Velocity profile	20

Chapter 5

5.Discussion And Conclusion	23
5.1 Discussion	23
5.2 Conclusion	23
Reference	24

List of figures

Figure 2.1 : Classifications of fluids	03
Figure 2.2 : Compressible Fluid Flow	04
Figure 2.3 : Incompressible Fluid Flow	04
Figure 2.4 : Laminar Flow	05
Figure 2.5: Turbulent Flow	05
Figure 2.6 : Geometry of the lid-driven cavity	07
Figure 2.7: The transmission to turbulent flow	09
Figure 3.1: Schematic diagram with the domain and boundary conditions.	11
Figure 4.1: Mesh generation of Free convection in square Lid-driven cavity	15
Figure 4.2: Pressure lines for different values of Ra and diameter	16
Figure 4.3: Velocity Profiles for different values of Ra and diameter	19

Nomenclature:

	$\mathbf{D}_{\mathbf{r}}$ is the transformed set of \mathbf{r}^3
ρ	Density, kg/m ³
T _h	Hot wall
T _c	Cold wall
k	thermal conductivity
c _p	Constant pressure specific heat, kJ/kg. K
Pr	Prandtl number
Fy	(Ra/Pr)
g	Gravitational acceleration, m/s ²
Gr	Grashof number
Ra	Rayleigh number
Т	Fluid temperature
T_{∞}	Temperature of ambient fluid; cold wall
U	Velocity component in X-direction
V	Velocity component in Y-direction
Х	Co-ordinate parallel to the plate
Y	Co-ordinate normal to the plate
μ	Dynamic viscosity
L _{ref}	Reference length
U _{ref}	Reference velocity $\left(\frac{a}{l}\right)$
P _{ref}	Reference pressure, $\frac{\rho \alpha \mu}{L_{ref}}$
T _{ref}	Reference temperature, T_{∞}
А	Heat transfer area [m2]
Q	Conduction heat transfer [W]
$\partial_{\rm T}/\partial_{\rm x}$	Temperature gradient [Km-1]
T _s	Absolute temperature of the hot surface [K]
T_{∞}	Absolute temperature of the cold surface [K]
$T_s - T_\infty$	Temperature difference [K]
h	Convection heat transfer coefficient, W/m^2 .K
ε	Emissivity of the surface