ACKNOWLEDGEMENT

This project is accomplished under the supervision of Md. Shadrul Alam, Lecturer, Department of Mechanical Engineering, Sonargaon University. It is a great pleasure to acknowledge our profound gratitude and respect to our supervisor for this consistent guidance, encouragement, helpful suggestion, constructive criticism and endless patience through the progress of this work. The successful completion of this thesis would not have been possible without his persistent motivation and continuous guidance.

The author are also grateful to Professor Md. Mostofa Hossain, Head of the Department of Mechanical Engineering and all respect teachers of the Mechanical Engineering Department for their co-operation and significant help for completing the thesis work successfully.

Finally, we are also grateful to the vice chancellor of Sonargaon University (SU) for his overall support to finish the project works.

Authors

Md. Monsur Ali, Md. Hasibul Hossain Sujon, Md. Mohiuddin Biplob, Md. Naimul Hasan.

ABSTRACT

A cylindrical solar water heater is designed and manufactured under the thesis work. It consists of a cylindrical tube made from high quality glass having a length of 1.524 m, 0.1143 m outer diameter and a thickness of 0.00254 m. A copper coil tube in the shape of spiral rings, with the tube inner diameter of 0.05m and outer diameter of 0.06m, painted black, serves as a collector to the incident solar energy on the cylinder wall. The thermal performance was evaluated extensively throughout the months of September and October 2019; a maximum temperature difference of 4.3°C between inlet and outlet of the solar water heater at a mass flow rate of .1512 L/min was achieved. The efficiency of the cylindrical solar water heater was calculated. The maximum value during the experimental period was found to be 31.6%. This reveals a good capability of the system to convert solar energy to heat which can be used for heating water. An economic analysis has reveals that the cylindrical solar water heater compared with the flat plate collector is cost effective.

TABLE OF CONTENTS

		PageNo.
ACKNOWLEDGEMENT		ii
ABSTRACT		iii
TABLE OF CONTENTS		iv-v
LIST OF TABLES		vi
LIST OF FIGURE		vii
NOMENCLATURE		viii
CHAPTER I	INTRODUCTION	1-4
1.1 Ba	ackground	1
1.2 Ba	asic of Solar Heating	2
1.3 Objective		4
1.4 Advantages		4
1.5 A	pplications	4
CHAPTER II	LITERATURE REVIEW	5-10
2.1 H	History of SWH	5
2.1.1	SWH use in developed countries	6
2.1.2 SWH uses in Bangladesh		7
2.2 0	Cylindrical Parabolic Solar Water Heater	8
2.3 H	Phenomenological Cylindrical Solar Water Heater	9
2.4S	electing a solar water heater	9
2.5 I	nstalling and maintaining the system	10
2.6Ir	nproving energy efficiency	10
2.7 0	Other water heater options	10

		Page No.
CHAPTERII	THEORETICALS ASPECTS	11-19
3.1	Working Principal of SWH	11
3.2	How Solar Water Heater (SWH) Work	11
3.2	Components od SWH	11
3.3.	1 Glass Tube	12
3.3.	2 Iron Bar	13
3.3.	3 Copper Tube	14
3.3.	4 Foil Paper	17
3.3.	5 Wood	18
3.3.	6 Temperature Meter	19
CHAPTER IV	CONSTRUCTION OF SWH	20-21
4.1	Methodology	20
4.2	Project Overview	20
4.3	Construction Processes	21
4.4	Material Specifications	21
CHAPTER V	EXPRIMENTS RESULT	22-25
5.1	Complete project picture	22
5.2	Data	23
5.3	Result Analysis	24
	DICCHERION & CONICI LICION	76 70
CHAPIER VI	DISCUSSION & CONCLUSION	20-28
6.1 I	Discussion	26
6.2 H	Future Scope	26
6.3 (Conclusion	27
Refe	rence	28

v

LIST OF TABLE

Table No.	Table Name	PageNo.
Table 3.3	Components of SWH	11
Table 4.3	Material Specifications	21
Table 5.2	Data	23

LIST OF FIGURES

Figure No.	Figure Name	Page No.
Figure2.1.1.1	Cylindrical solar water heater	6
Figure2.1.2.1	Weather Graph of Bangladesh	7
Figure2.2.1	Cylindrical Parabolic Solar Water Heater	8
Figure2.2.2	Phenomenological Cylindrical Solar Water Heater	9
Figure 3.3.1	Glass Tube	12
Figure 3.2.2:	Iron Bar	13
Figure 3.3.3:	Copper Pipe	14
Figure 3.3.4:	Foil paper	17
Figure 3.3.5:	Wood	18
Figure3.3.6:	Temperature Meter	19
Figure5.1.1:	Complete Project Picture	22
Figure 5.3.1:	Inlet temperature with respect to time.	24
Figure5.3.2:	Outlet temperature with respect to time.	24
Figure5.3.3:	Flow Rate with respect to time.	25

NOMENCLATURE

SWH	= Solar Water Heater.
OD	= Outside Diameter.
ID	= Inside Diameter.
HVA	C = Heating and Ventilation Air-Conditioning.
SOE	= Department of Energy.
Qu	= Useful Gain Energy.
Q	= Volume Flow Rate.
Ср	= specific heat in constant pressure.
Irad	= solar radiation in watt/meter squre.
С	= Degree Celsius.
K	= Kelvin
am	= ante meridian
pm	= post meridian
m	= meter.
S	= second.
ft	= feet.
in	= inch.
W	= watt.
η	=efficiency.
J	= joule.
Kg	= kilogram.